An in-silico approach to meniscus tissue regeneration: Modeling, numerical simulation, and experimental analysis

We develop a model the dynamics of human mesenchymal stem cells (hMSCs) and chondrocytes evolving in a nonwoven polyethylene terephtalate (PET) scaffold impregnated with hyaluron and supplied with a differentiation medium. The scaffold and the cells are assumed to be contained in a bioreactor with f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Grosjean, Elise, Keilmann, Alex, Jäger, Henry, Shimi Mohanan, Redenbach, Claudia, Simeon, Bernd, Surulescu, Christina, de Roy, Luisa, Seitz, Andreas, Teixeira, Graciosa, Dauner, Martin, Linti, Carsten, Schmidt, Günter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a model the dynamics of human mesenchymal stem cells (hMSCs) and chondrocytes evolving in a nonwoven polyethylene terephtalate (PET) scaffold impregnated with hyaluron and supplied with a differentiation medium. The scaffold and the cells are assumed to be contained in a bioreactor with fluid perfusion. The differentiation of hMSCs into chondrocytes favors the production of extracellular matrix (ECM) and is influenced by fluid stress. The model takes deformations of ECM and PET scaffold into account. The scaffold structure is explicitly included by statistical assessment of the fibre distribution from CT images. The effective macroscopic equations are obtained by appropriate upscaling from dynamics on lower (microscopic and mesoscopic) scales and feature in the motility terms an explicit cell diffusion tensor encoding the assessed anisotropic scaffold structure. Numerical simulations show its influence on the overall cell and tissue dynamics.
ISSN:2331-8422