Bounding Stochastic Safety: Leveraging Freedman's Inequality with Discrete-Time Control Barrier Functions

When deployed in the real world, safe control methods must be robust to unstructured uncertainties such as modeling error and external disturbances. Typical robust safety methods achieve their guarantees by always assuming that the worst-case disturbance will occur. In contrast, this paper utilizes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Cosner, Ryan K, Culbertson, Preston, Ames, Aaron D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When deployed in the real world, safe control methods must be robust to unstructured uncertainties such as modeling error and external disturbances. Typical robust safety methods achieve their guarantees by always assuming that the worst-case disturbance will occur. In contrast, this paper utilizes Freedman's inequality in the context of discrete-time control barrier functions (DTCBFs) and c-martingales to provide stronger (less conservative) safety guarantees for stochastic systems. Our approach accounts for the underlying disturbance distribution instead of relying exclusively on its worst-case bound and does not require the barrier function to be upper-bounded, which makes the resulting safety probability bounds more directly useful for intuitive safety constraints such as signed distance. We compare our results with existing safety guarantees, such as input-to-state safety (ISSf) and martingale results that rely on Ville's inequality. When the assumptions for all methods hold, we provide a range of parameters for which our guarantee is stronger. Finally, we present simulation examples, including a bipedal walking robot, that demonstrate the utility and tightness of our safety guarantee.
ISSN:2331-8422