Integrated Geotechnical and Electrical Resistivity Tomography to Map the Lithological Variability Involved and Breaking Surface Evolution in Landslide Context: A Case Study of the Targa Ouzemour (Béjaia)
The specific lithology of the southern part of Bejaia city represents a major limitation to urban settlement and expansion. This is partly due to landslides that tend to affect this region. To date, one of these landslides in this region has occurred in the Targa Ouzemour area, where the damage exte...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2024-03, Vol.16 (5), p.682 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The specific lithology of the southern part of Bejaia city represents a major limitation to urban settlement and expansion. This is partly due to landslides that tend to affect this region. To date, one of these landslides in this region has occurred in the Targa Ouzemour area, where the damage extended approximately six hectares. The main purpose of this study is to identify the failure surfaces characterizing the internal structure of this landslide as well as the significant influence of groundwater on slope instability, which manifests as surface cracking and subsidence. We have combined several geotechnical and geophysical methods, including field observations. The exploitation of the collected geotechnical data from the six (06) boreholes drilled in the landslide zone has allowed for knowledge to be gained on the lithological components, as well as the characterizations of physical and mechanical properties on a range of different types of affected rocks, whereas electrical resistivity tomography (ERT) data allowed an in-depth examination, leading us to reconstruct the landslide geometry and particularly to evaluate the hydrological characteristics of the studied site. Moreover, the resistivity contrast patterns provided more clarity to discern between the various lithological formations that are still stable or actively moving within this landslide. All these findings have contributed to the construction of a characteristic geomodel that highlights the failure surfaces over which displacement is still experienced. Finally, with the evidence of rainfall effects on the deformation and stability of the slope, specific landslide remedial measures were accordingly suggested. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w16050682 |