A Staged Real-Time Ground Segmentation Algorithm of 3D LiDAR Point Cloud

Ground segmentation is a crucial task in the field of 3D LiDAR perception for autonomous driving. It is commonly used as a preprocessing step for tasks such as object detection and road extraction. However, the existing ground segmentation algorithms often struggle to meet the requirements of robust...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-03, Vol.13 (5), p.841
Hauptverfasser: Deng, Weiye, Chen, Xiaoping, Jiang, Jingwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ground segmentation is a crucial task in the field of 3D LiDAR perception for autonomous driving. It is commonly used as a preprocessing step for tasks such as object detection and road extraction. However, the existing ground segmentation algorithms often struggle to meet the requirements of robustness and real-time performance due to significant variations in ground slopes and flatness across different scenes, as well as the influence of objects such as grass, flowerbeds, and trees in the environment. To address these challenges, this paper proposes a staged real-time ground segmentation algorithm. The proposed algorithm not only achieves high real-time performance but also exhibits improved robustness. Based on a concentric zone model, the algorithm filters out reflected noise points and vertical non-ground points in the first stage, improving the validity of the fitted ground plane. In the second stage, the algorithm effectively addresses the issue of undersegmentation of ground points through three steps: ground plane fitting, ground plane validity judgment, and ground plane repair. The experimental results on the SemanticKITTI dataset demonstrate that the proposed algorithm outperforms the existing methods in terms of segmentation results.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics13050841