Transformer Core Fault Diagnosis via Current Signal Analysis with Pearson Correlation Feature Selection
The role of transformers in power distribution is crucial, as their reliable operation is essential for maintaining the electrical grid’s stability. Single-phase transformers are highly versatile, making them suitable for various applications requiring precise voltage control and isolation. In this...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-03, Vol.13 (5), p.926 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 926 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Domingo, Daryl Kareem, Akeem Bayo Okwuosa, Chibuzo Nwabufo Custodio, Paul Michael Hur, Jang-Wook |
description | The role of transformers in power distribution is crucial, as their reliable operation is essential for maintaining the electrical grid’s stability. Single-phase transformers are highly versatile, making them suitable for various applications requiring precise voltage control and isolation. In this study, we investigated the fault diagnosis of a 1 kVA single-phase transformer core subjected to induced faults. Our diagnostic approach involved using a combination of advanced signal processing techniques, such as the fast Fourier transform (FFT) and Hilbert transform (HT), to analyze the current signals. Our analysis aimed to differentiate and characterize the unique signatures associated with each fault type, utilizing statistical feature selection based on the Pearson correlation and a machine learning classifier. Our results showed significant improvements in all metrics for the classifier models, particularly the k-nearest neighbor (KNN) algorithm, with 83.89% accuracy and a computational cost of 0.2963 s. For future studies, our focus will be on using deep learning models to improve the effectiveness of the proposed method. |
doi_str_mv | 10.3390/electronics13050926 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2955513468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A786436058</galeid><sourcerecordid>A786436058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-38610e17fae2d8b1ae0f1a2c4a308fad8d74ce22b986ee96068e94f3841125e3</originalsourceid><addsrcrecordid>eNptUU1Lw0AQDaJgqf0FXgKeU_cj2eweS7UqFBTae5gms3FLmq27G6X_3o314MEZmHm8eW8YmCS5pWTOuSL32GEdnO1N7SknBVFMXCQTRkqVKabY5R98ncy835MYinLJySRptw56r607oEuX1mG6gqEL6YOBtrfe-PTTQLocnMM-pBvT9tCli1hO4-zLhPf0DcF5249uhx0EE_EKIQxx2ebnuMjcJFcaOo-z3z5NtqvH7fI5W78-vSwX66zmgoaMS0EJ0lIDskbuKCDRFFidAydSQyObMq-RsZ2SAlEJIiSqXHOZU8oK5NPk7rz26OzHgD5Uezu4eK6vmCqKgvJcyKian1UtdFiZXtvgoI7Z4MHUtkdtIr8opci5IMVo4GdD7az3DnV1dOYA7lRRUo1PqP55Av8Gz65-UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2955513468</pqid></control><display><type>article</type><title>Transformer Core Fault Diagnosis via Current Signal Analysis with Pearson Correlation Feature Selection</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Domingo, Daryl ; Kareem, Akeem Bayo ; Okwuosa, Chibuzo Nwabufo ; Custodio, Paul Michael ; Hur, Jang-Wook</creator><creatorcontrib>Domingo, Daryl ; Kareem, Akeem Bayo ; Okwuosa, Chibuzo Nwabufo ; Custodio, Paul Michael ; Hur, Jang-Wook</creatorcontrib><description>The role of transformers in power distribution is crucial, as their reliable operation is essential for maintaining the electrical grid’s stability. Single-phase transformers are highly versatile, making them suitable for various applications requiring precise voltage control and isolation. In this study, we investigated the fault diagnosis of a 1 kVA single-phase transformer core subjected to induced faults. Our diagnostic approach involved using a combination of advanced signal processing techniques, such as the fast Fourier transform (FFT) and Hilbert transform (HT), to analyze the current signals. Our analysis aimed to differentiate and characterize the unique signatures associated with each fault type, utilizing statistical feature selection based on the Pearson correlation and a machine learning classifier. Our results showed significant improvements in all metrics for the classifier models, particularly the k-nearest neighbor (KNN) algorithm, with 83.89% accuracy and a computational cost of 0.2963 s. For future studies, our focus will be on using deep learning models to improve the effectiveness of the proposed method.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13050926</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Breakdowns ; Classifiers ; Data compression ; Deep learning ; Efficiency ; Electric currents ; Electric fault location ; Electric power grids ; Electric transformers ; Fast Fourier transformations ; Fault diagnosis ; Feature selection ; Fourier transforms ; Hilbert transformation ; K-nearest neighbors algorithm ; Machine learning ; Magnetic fields ; Methods ; Performance evaluation ; Repair & maintenance ; Signal analysis ; Signal processing ; Vibration</subject><ispartof>Electronics (Basel), 2024-03, Vol.13 (5), p.926</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-38610e17fae2d8b1ae0f1a2c4a308fad8d74ce22b986ee96068e94f3841125e3</citedby><cites>FETCH-LOGICAL-c361t-38610e17fae2d8b1ae0f1a2c4a308fad8d74ce22b986ee96068e94f3841125e3</cites><orcidid>0009-0006-8201-1206 ; 0009-0005-0571-5499 ; 0000-0001-6501-5201 ; 0000-0003-3382-0382 ; 0000-0002-4718-3540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Domingo, Daryl</creatorcontrib><creatorcontrib>Kareem, Akeem Bayo</creatorcontrib><creatorcontrib>Okwuosa, Chibuzo Nwabufo</creatorcontrib><creatorcontrib>Custodio, Paul Michael</creatorcontrib><creatorcontrib>Hur, Jang-Wook</creatorcontrib><title>Transformer Core Fault Diagnosis via Current Signal Analysis with Pearson Correlation Feature Selection</title><title>Electronics (Basel)</title><description>The role of transformers in power distribution is crucial, as their reliable operation is essential for maintaining the electrical grid’s stability. Single-phase transformers are highly versatile, making them suitable for various applications requiring precise voltage control and isolation. In this study, we investigated the fault diagnosis of a 1 kVA single-phase transformer core subjected to induced faults. Our diagnostic approach involved using a combination of advanced signal processing techniques, such as the fast Fourier transform (FFT) and Hilbert transform (HT), to analyze the current signals. Our analysis aimed to differentiate and characterize the unique signatures associated with each fault type, utilizing statistical feature selection based on the Pearson correlation and a machine learning classifier. Our results showed significant improvements in all metrics for the classifier models, particularly the k-nearest neighbor (KNN) algorithm, with 83.89% accuracy and a computational cost of 0.2963 s. For future studies, our focus will be on using deep learning models to improve the effectiveness of the proposed method.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Breakdowns</subject><subject>Classifiers</subject><subject>Data compression</subject><subject>Deep learning</subject><subject>Efficiency</subject><subject>Electric currents</subject><subject>Electric fault location</subject><subject>Electric power grids</subject><subject>Electric transformers</subject><subject>Fast Fourier transformations</subject><subject>Fault diagnosis</subject><subject>Feature selection</subject><subject>Fourier transforms</subject><subject>Hilbert transformation</subject><subject>K-nearest neighbors algorithm</subject><subject>Machine learning</subject><subject>Magnetic fields</subject><subject>Methods</subject><subject>Performance evaluation</subject><subject>Repair & maintenance</subject><subject>Signal analysis</subject><subject>Signal processing</subject><subject>Vibration</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUU1Lw0AQDaJgqf0FXgKeU_cj2eweS7UqFBTae5gms3FLmq27G6X_3o314MEZmHm8eW8YmCS5pWTOuSL32GEdnO1N7SknBVFMXCQTRkqVKabY5R98ncy835MYinLJySRptw56r607oEuX1mG6gqEL6YOBtrfe-PTTQLocnMM-pBvT9tCli1hO4-zLhPf0DcF5249uhx0EE_EKIQxx2ebnuMjcJFcaOo-z3z5NtqvH7fI5W78-vSwX66zmgoaMS0EJ0lIDskbuKCDRFFidAydSQyObMq-RsZ2SAlEJIiSqXHOZU8oK5NPk7rz26OzHgD5Uezu4eK6vmCqKgvJcyKian1UtdFiZXtvgoI7Z4MHUtkdtIr8opci5IMVo4GdD7az3DnV1dOYA7lRRUo1PqP55Av8Gz65-UQ</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Domingo, Daryl</creator><creator>Kareem, Akeem Bayo</creator><creator>Okwuosa, Chibuzo Nwabufo</creator><creator>Custodio, Paul Michael</creator><creator>Hur, Jang-Wook</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0009-0006-8201-1206</orcidid><orcidid>https://orcid.org/0009-0005-0571-5499</orcidid><orcidid>https://orcid.org/0000-0001-6501-5201</orcidid><orcidid>https://orcid.org/0000-0003-3382-0382</orcidid><orcidid>https://orcid.org/0000-0002-4718-3540</orcidid></search><sort><creationdate>20240301</creationdate><title>Transformer Core Fault Diagnosis via Current Signal Analysis with Pearson Correlation Feature Selection</title><author>Domingo, Daryl ; Kareem, Akeem Bayo ; Okwuosa, Chibuzo Nwabufo ; Custodio, Paul Michael ; Hur, Jang-Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-38610e17fae2d8b1ae0f1a2c4a308fad8d74ce22b986ee96068e94f3841125e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Breakdowns</topic><topic>Classifiers</topic><topic>Data compression</topic><topic>Deep learning</topic><topic>Efficiency</topic><topic>Electric currents</topic><topic>Electric fault location</topic><topic>Electric power grids</topic><topic>Electric transformers</topic><topic>Fast Fourier transformations</topic><topic>Fault diagnosis</topic><topic>Feature selection</topic><topic>Fourier transforms</topic><topic>Hilbert transformation</topic><topic>K-nearest neighbors algorithm</topic><topic>Machine learning</topic><topic>Magnetic fields</topic><topic>Methods</topic><topic>Performance evaluation</topic><topic>Repair & maintenance</topic><topic>Signal analysis</topic><topic>Signal processing</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Domingo, Daryl</creatorcontrib><creatorcontrib>Kareem, Akeem Bayo</creatorcontrib><creatorcontrib>Okwuosa, Chibuzo Nwabufo</creatorcontrib><creatorcontrib>Custodio, Paul Michael</creatorcontrib><creatorcontrib>Hur, Jang-Wook</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Domingo, Daryl</au><au>Kareem, Akeem Bayo</au><au>Okwuosa, Chibuzo Nwabufo</au><au>Custodio, Paul Michael</au><au>Hur, Jang-Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transformer Core Fault Diagnosis via Current Signal Analysis with Pearson Correlation Feature Selection</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>13</volume><issue>5</issue><spage>926</spage><pages>926-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The role of transformers in power distribution is crucial, as their reliable operation is essential for maintaining the electrical grid’s stability. Single-phase transformers are highly versatile, making them suitable for various applications requiring precise voltage control and isolation. In this study, we investigated the fault diagnosis of a 1 kVA single-phase transformer core subjected to induced faults. Our diagnostic approach involved using a combination of advanced signal processing techniques, such as the fast Fourier transform (FFT) and Hilbert transform (HT), to analyze the current signals. Our analysis aimed to differentiate and characterize the unique signatures associated with each fault type, utilizing statistical feature selection based on the Pearson correlation and a machine learning classifier. Our results showed significant improvements in all metrics for the classifier models, particularly the k-nearest neighbor (KNN) algorithm, with 83.89% accuracy and a computational cost of 0.2963 s. For future studies, our focus will be on using deep learning models to improve the effectiveness of the proposed method.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13050926</doi><orcidid>https://orcid.org/0009-0006-8201-1206</orcidid><orcidid>https://orcid.org/0009-0005-0571-5499</orcidid><orcidid>https://orcid.org/0000-0001-6501-5201</orcidid><orcidid>https://orcid.org/0000-0003-3382-0382</orcidid><orcidid>https://orcid.org/0000-0002-4718-3540</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-03, Vol.13 (5), p.926 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2955513468 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Algorithms Artificial intelligence Breakdowns Classifiers Data compression Deep learning Efficiency Electric currents Electric fault location Electric power grids Electric transformers Fast Fourier transformations Fault diagnosis Feature selection Fourier transforms Hilbert transformation K-nearest neighbors algorithm Machine learning Magnetic fields Methods Performance evaluation Repair & maintenance Signal analysis Signal processing Vibration |
title | Transformer Core Fault Diagnosis via Current Signal Analysis with Pearson Correlation Feature Selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transformer%20Core%20Fault%20Diagnosis%20via%20Current%20Signal%20Analysis%20with%20Pearson%20Correlation%20Feature%20Selection&rft.jtitle=Electronics%20(Basel)&rft.au=Domingo,%20Daryl&rft.date=2024-03-01&rft.volume=13&rft.issue=5&rft.spage=926&rft.pages=926-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13050926&rft_dat=%3Cgale_proqu%3EA786436058%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2955513468&rft_id=info:pmid/&rft_galeid=A786436058&rfr_iscdi=true |