Transformer Core Fault Diagnosis via Current Signal Analysis with Pearson Correlation Feature Selection

The role of transformers in power distribution is crucial, as their reliable operation is essential for maintaining the electrical grid’s stability. Single-phase transformers are highly versatile, making them suitable for various applications requiring precise voltage control and isolation. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-03, Vol.13 (5), p.926
Hauptverfasser: Domingo, Daryl, Kareem, Akeem Bayo, Okwuosa, Chibuzo Nwabufo, Custodio, Paul Michael, Hur, Jang-Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The role of transformers in power distribution is crucial, as their reliable operation is essential for maintaining the electrical grid’s stability. Single-phase transformers are highly versatile, making them suitable for various applications requiring precise voltage control and isolation. In this study, we investigated the fault diagnosis of a 1 kVA single-phase transformer core subjected to induced faults. Our diagnostic approach involved using a combination of advanced signal processing techniques, such as the fast Fourier transform (FFT) and Hilbert transform (HT), to analyze the current signals. Our analysis aimed to differentiate and characterize the unique signatures associated with each fault type, utilizing statistical feature selection based on the Pearson correlation and a machine learning classifier. Our results showed significant improvements in all metrics for the classifier models, particularly the k-nearest neighbor (KNN) algorithm, with 83.89% accuracy and a computational cost of 0.2963 s. For future studies, our focus will be on using deep learning models to improve the effectiveness of the proposed method.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics13050926