ON MODELLING WATER QUALITY WITH STOCHASTIC DIFFERENTIAL EQUATIONS

Based on biochemical kinetics, a stochastic model to characterize wastewater treatment plants and dynamics of river water quality under the influence of random fluctuations is proposed in this paper. This model describes the interaction between dissolved oxygen (DO) and biochemical oxygen demand (BO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ANZIAM journal 2023-07, Vol.65 (3), p.273-284
1. Verfasser: MANSOUR, MAHMOUD B. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 284
container_issue 3
container_start_page 273
container_title The ANZIAM journal
container_volume 65
creator MANSOUR, MAHMOUD B. A.
description Based on biochemical kinetics, a stochastic model to characterize wastewater treatment plants and dynamics of river water quality under the influence of random fluctuations is proposed in this paper. This model describes the interaction between dissolved oxygen (DO) and biochemical oxygen demand (BOD), and is in the form of stochastic differential equations driven by multiplicative Gaussian noises. The stochastic persistence problem for the model of the system is analysed. Further, a numerical simulation of the stationary probability distributions of BOD and OD by approximations of the stochastic process solution is presented. These results have implications for the prediction and control of pollutants.
doi_str_mv 10.1017/S1446181123000214
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2955196640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1446181123000214</cupid><sourcerecordid>2955196640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-b234efa315d7fa90879ccf14cd8922449ef69c694f9e966057b084cf8b7eae133</originalsourceid><addsrcrecordid>eNp1kFFLwzAUhYMoOKc_wLeAz9XcJG2ax9J1W6C2uGYMn0qbJbLh3Ey3h_17OzbwQXy6l3vPdw4chB6BPAMB8VIB5xHEAJQRQijwKzQ4nYJYsPD6sp_-t-iu69aEcCYYHaCkLPBrOcryXBUTvEh0NsNv8yRX-h0vlJ7iSpfpNKm0SvFIjcfZLCu0SnKc9SqtyqK6Rzeu-ezsw2UO0Xyc6XQa5OVEpUkeGBrJfdBSxq1rGIRL4RpJYiGNccDNMpaUci6ti6SJJHfSyigioWhJzI2LW2EbC4wN0dPZd-e33wfb7ev19uC_-siayjCEHuKkV8FZZfy267x19c6vNo0_1kDqU1P1n6Z6hl2YZtP61fLD_lr_T_0AZhxjTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2955196640</pqid></control><display><type>article</type><title>ON MODELLING WATER QUALITY WITH STOCHASTIC DIFFERENTIAL EQUATIONS</title><source>Cambridge Journals - Connect here FIRST to enable access</source><source>Alma/SFX Local Collection</source><creator>MANSOUR, MAHMOUD B. A.</creator><creatorcontrib>MANSOUR, MAHMOUD B. A.</creatorcontrib><description>Based on biochemical kinetics, a stochastic model to characterize wastewater treatment plants and dynamics of river water quality under the influence of random fluctuations is proposed in this paper. This model describes the interaction between dissolved oxygen (DO) and biochemical oxygen demand (BOD), and is in the form of stochastic differential equations driven by multiplicative Gaussian noises. The stochastic persistence problem for the model of the system is analysed. Further, a numerical simulation of the stationary probability distributions of BOD and OD by approximations of the stochastic process solution is presented. These results have implications for the prediction and control of pollutants.</description><identifier>ISSN: 1446-1811</identifier><identifier>EISSN: 1446-8735</identifier><identifier>DOI: 10.1017/S1446181123000214</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Biochemical oxygen demand ; Differential equations ; Dissolved oxygen ; Equilibrium ; Noise ; Stochastic models ; Stochastic processes ; Wastewater treatment ; Water quality</subject><ispartof>The ANZIAM journal, 2023-07, Vol.65 (3), p.273-284</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press on behalf of The Australian Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-b234efa315d7fa90879ccf14cd8922449ef69c694f9e966057b084cf8b7eae133</cites><orcidid>0000-0002-4513-0162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1446181123000214/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>MANSOUR, MAHMOUD B. A.</creatorcontrib><title>ON MODELLING WATER QUALITY WITH STOCHASTIC DIFFERENTIAL EQUATIONS</title><title>The ANZIAM journal</title><addtitle>ANZIAM J</addtitle><description>Based on biochemical kinetics, a stochastic model to characterize wastewater treatment plants and dynamics of river water quality under the influence of random fluctuations is proposed in this paper. This model describes the interaction between dissolved oxygen (DO) and biochemical oxygen demand (BOD), and is in the form of stochastic differential equations driven by multiplicative Gaussian noises. The stochastic persistence problem for the model of the system is analysed. Further, a numerical simulation of the stationary probability distributions of BOD and OD by approximations of the stochastic process solution is presented. These results have implications for the prediction and control of pollutants.</description><subject>Biochemical oxygen demand</subject><subject>Differential equations</subject><subject>Dissolved oxygen</subject><subject>Equilibrium</subject><subject>Noise</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Wastewater treatment</subject><subject>Water quality</subject><issn>1446-1811</issn><issn>1446-8735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kFFLwzAUhYMoOKc_wLeAz9XcJG2ax9J1W6C2uGYMn0qbJbLh3Ey3h_17OzbwQXy6l3vPdw4chB6BPAMB8VIB5xHEAJQRQijwKzQ4nYJYsPD6sp_-t-iu69aEcCYYHaCkLPBrOcryXBUTvEh0NsNv8yRX-h0vlJ7iSpfpNKm0SvFIjcfZLCu0SnKc9SqtyqK6Rzeu-ezsw2UO0Xyc6XQa5OVEpUkeGBrJfdBSxq1rGIRL4RpJYiGNccDNMpaUci6ti6SJJHfSyigioWhJzI2LW2EbC4wN0dPZd-e33wfb7ev19uC_-siayjCEHuKkV8FZZfy267x19c6vNo0_1kDqU1P1n6Z6hl2YZtP61fLD_lr_T_0AZhxjTA</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>MANSOUR, MAHMOUD B. A.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4513-0162</orcidid></search><sort><creationdate>20230701</creationdate><title>ON MODELLING WATER QUALITY WITH STOCHASTIC DIFFERENTIAL EQUATIONS</title><author>MANSOUR, MAHMOUD B. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-b234efa315d7fa90879ccf14cd8922449ef69c694f9e966057b084cf8b7eae133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biochemical oxygen demand</topic><topic>Differential equations</topic><topic>Dissolved oxygen</topic><topic>Equilibrium</topic><topic>Noise</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Wastewater treatment</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MANSOUR, MAHMOUD B. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>The ANZIAM journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MANSOUR, MAHMOUD B. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON MODELLING WATER QUALITY WITH STOCHASTIC DIFFERENTIAL EQUATIONS</atitle><jtitle>The ANZIAM journal</jtitle><addtitle>ANZIAM J</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>65</volume><issue>3</issue><spage>273</spage><epage>284</epage><pages>273-284</pages><issn>1446-1811</issn><eissn>1446-8735</eissn><abstract>Based on biochemical kinetics, a stochastic model to characterize wastewater treatment plants and dynamics of river water quality under the influence of random fluctuations is proposed in this paper. This model describes the interaction between dissolved oxygen (DO) and biochemical oxygen demand (BOD), and is in the form of stochastic differential equations driven by multiplicative Gaussian noises. The stochastic persistence problem for the model of the system is analysed. Further, a numerical simulation of the stationary probability distributions of BOD and OD by approximations of the stochastic process solution is presented. These results have implications for the prediction and control of pollutants.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1446181123000214</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4513-0162</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1446-1811
ispartof The ANZIAM journal, 2023-07, Vol.65 (3), p.273-284
issn 1446-1811
1446-8735
language eng
recordid cdi_proquest_journals_2955196640
source Cambridge Journals - Connect here FIRST to enable access; Alma/SFX Local Collection
subjects Biochemical oxygen demand
Differential equations
Dissolved oxygen
Equilibrium
Noise
Stochastic models
Stochastic processes
Wastewater treatment
Water quality
title ON MODELLING WATER QUALITY WITH STOCHASTIC DIFFERENTIAL EQUATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20MODELLING%20WATER%20QUALITY%20WITH%20STOCHASTIC%20DIFFERENTIAL%20EQUATIONS&rft.jtitle=The%20ANZIAM%20journal&rft.au=MANSOUR,%20MAHMOUD%20B.%20A.&rft.date=2023-07-01&rft.volume=65&rft.issue=3&rft.spage=273&rft.epage=284&rft.pages=273-284&rft.issn=1446-1811&rft.eissn=1446-8735&rft_id=info:doi/10.1017/S1446181123000214&rft_dat=%3Cproquest_cross%3E2955196640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2955196640&rft_id=info:pmid/&rft_cupid=10_1017_S1446181123000214&rfr_iscdi=true