ON MODELLING WATER QUALITY WITH STOCHASTIC DIFFERENTIAL EQUATIONS
Based on biochemical kinetics, a stochastic model to characterize wastewater treatment plants and dynamics of river water quality under the influence of random fluctuations is proposed in this paper. This model describes the interaction between dissolved oxygen (DO) and biochemical oxygen demand (BO...
Gespeichert in:
Veröffentlicht in: | The ANZIAM journal 2023-07, Vol.65 (3), p.273-284 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 284 |
---|---|
container_issue | 3 |
container_start_page | 273 |
container_title | The ANZIAM journal |
container_volume | 65 |
creator | MANSOUR, MAHMOUD B. A. |
description | Based on biochemical kinetics, a stochastic model to characterize wastewater treatment plants and dynamics of river water quality under the influence of random fluctuations is proposed in this paper. This model describes the interaction between dissolved oxygen (DO) and biochemical oxygen demand (BOD), and is in the form of stochastic differential equations driven by multiplicative Gaussian noises. The stochastic persistence problem for the model of the system is analysed. Further, a numerical simulation of the stationary probability distributions of BOD and OD by approximations of the stochastic process solution is presented. These results have implications for the prediction and control of pollutants. |
doi_str_mv | 10.1017/S1446181123000214 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2955196640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1446181123000214</cupid><sourcerecordid>2955196640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-b234efa315d7fa90879ccf14cd8922449ef69c694f9e966057b084cf8b7eae133</originalsourceid><addsrcrecordid>eNp1kFFLwzAUhYMoOKc_wLeAz9XcJG2ax9J1W6C2uGYMn0qbJbLh3Ey3h_17OzbwQXy6l3vPdw4chB6BPAMB8VIB5xHEAJQRQijwKzQ4nYJYsPD6sp_-t-iu69aEcCYYHaCkLPBrOcryXBUTvEh0NsNv8yRX-h0vlJ7iSpfpNKm0SvFIjcfZLCu0SnKc9SqtyqK6Rzeu-ezsw2UO0Xyc6XQa5OVEpUkeGBrJfdBSxq1rGIRL4RpJYiGNccDNMpaUci6ti6SJJHfSyigioWhJzI2LW2EbC4wN0dPZd-e33wfb7ev19uC_-siayjCEHuKkV8FZZfy267x19c6vNo0_1kDqU1P1n6Z6hl2YZtP61fLD_lr_T_0AZhxjTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2955196640</pqid></control><display><type>article</type><title>ON MODELLING WATER QUALITY WITH STOCHASTIC DIFFERENTIAL EQUATIONS</title><source>Cambridge Journals - Connect here FIRST to enable access</source><source>Alma/SFX Local Collection</source><creator>MANSOUR, MAHMOUD B. A.</creator><creatorcontrib>MANSOUR, MAHMOUD B. A.</creatorcontrib><description>Based on biochemical kinetics, a stochastic model to characterize wastewater treatment plants and dynamics of river water quality under the influence of random fluctuations is proposed in this paper. This model describes the interaction between dissolved oxygen (DO) and biochemical oxygen demand (BOD), and is in the form of stochastic differential equations driven by multiplicative Gaussian noises. The stochastic persistence problem for the model of the system is analysed. Further, a numerical simulation of the stationary probability distributions of BOD and OD by approximations of the stochastic process solution is presented. These results have implications for the prediction and control of pollutants.</description><identifier>ISSN: 1446-1811</identifier><identifier>EISSN: 1446-8735</identifier><identifier>DOI: 10.1017/S1446181123000214</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Biochemical oxygen demand ; Differential equations ; Dissolved oxygen ; Equilibrium ; Noise ; Stochastic models ; Stochastic processes ; Wastewater treatment ; Water quality</subject><ispartof>The ANZIAM journal, 2023-07, Vol.65 (3), p.273-284</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press on behalf of The Australian Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-b234efa315d7fa90879ccf14cd8922449ef69c694f9e966057b084cf8b7eae133</cites><orcidid>0000-0002-4513-0162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1446181123000214/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>MANSOUR, MAHMOUD B. A.</creatorcontrib><title>ON MODELLING WATER QUALITY WITH STOCHASTIC DIFFERENTIAL EQUATIONS</title><title>The ANZIAM journal</title><addtitle>ANZIAM J</addtitle><description>Based on biochemical kinetics, a stochastic model to characterize wastewater treatment plants and dynamics of river water quality under the influence of random fluctuations is proposed in this paper. This model describes the interaction between dissolved oxygen (DO) and biochemical oxygen demand (BOD), and is in the form of stochastic differential equations driven by multiplicative Gaussian noises. The stochastic persistence problem for the model of the system is analysed. Further, a numerical simulation of the stationary probability distributions of BOD and OD by approximations of the stochastic process solution is presented. These results have implications for the prediction and control of pollutants.</description><subject>Biochemical oxygen demand</subject><subject>Differential equations</subject><subject>Dissolved oxygen</subject><subject>Equilibrium</subject><subject>Noise</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Wastewater treatment</subject><subject>Water quality</subject><issn>1446-1811</issn><issn>1446-8735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kFFLwzAUhYMoOKc_wLeAz9XcJG2ax9J1W6C2uGYMn0qbJbLh3Ey3h_17OzbwQXy6l3vPdw4chB6BPAMB8VIB5xHEAJQRQijwKzQ4nYJYsPD6sp_-t-iu69aEcCYYHaCkLPBrOcryXBUTvEh0NsNv8yRX-h0vlJ7iSpfpNKm0SvFIjcfZLCu0SnKc9SqtyqK6Rzeu-ezsw2UO0Xyc6XQa5OVEpUkeGBrJfdBSxq1rGIRL4RpJYiGNccDNMpaUci6ti6SJJHfSyigioWhJzI2LW2EbC4wN0dPZd-e33wfb7ev19uC_-siayjCEHuKkV8FZZfy267x19c6vNo0_1kDqU1P1n6Z6hl2YZtP61fLD_lr_T_0AZhxjTA</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>MANSOUR, MAHMOUD B. A.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4513-0162</orcidid></search><sort><creationdate>20230701</creationdate><title>ON MODELLING WATER QUALITY WITH STOCHASTIC DIFFERENTIAL EQUATIONS</title><author>MANSOUR, MAHMOUD B. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-b234efa315d7fa90879ccf14cd8922449ef69c694f9e966057b084cf8b7eae133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biochemical oxygen demand</topic><topic>Differential equations</topic><topic>Dissolved oxygen</topic><topic>Equilibrium</topic><topic>Noise</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Wastewater treatment</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MANSOUR, MAHMOUD B. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>The ANZIAM journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MANSOUR, MAHMOUD B. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON MODELLING WATER QUALITY WITH STOCHASTIC DIFFERENTIAL EQUATIONS</atitle><jtitle>The ANZIAM journal</jtitle><addtitle>ANZIAM J</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>65</volume><issue>3</issue><spage>273</spage><epage>284</epage><pages>273-284</pages><issn>1446-1811</issn><eissn>1446-8735</eissn><abstract>Based on biochemical kinetics, a stochastic model to characterize wastewater treatment plants and dynamics of river water quality under the influence of random fluctuations is proposed in this paper. This model describes the interaction between dissolved oxygen (DO) and biochemical oxygen demand (BOD), and is in the form of stochastic differential equations driven by multiplicative Gaussian noises. The stochastic persistence problem for the model of the system is analysed. Further, a numerical simulation of the stationary probability distributions of BOD and OD by approximations of the stochastic process solution is presented. These results have implications for the prediction and control of pollutants.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1446181123000214</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4513-0162</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1446-1811 |
ispartof | The ANZIAM journal, 2023-07, Vol.65 (3), p.273-284 |
issn | 1446-1811 1446-8735 |
language | eng |
recordid | cdi_proquest_journals_2955196640 |
source | Cambridge Journals - Connect here FIRST to enable access; Alma/SFX Local Collection |
subjects | Biochemical oxygen demand Differential equations Dissolved oxygen Equilibrium Noise Stochastic models Stochastic processes Wastewater treatment Water quality |
title | ON MODELLING WATER QUALITY WITH STOCHASTIC DIFFERENTIAL EQUATIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20MODELLING%20WATER%20QUALITY%20WITH%20STOCHASTIC%20DIFFERENTIAL%20EQUATIONS&rft.jtitle=The%20ANZIAM%20journal&rft.au=MANSOUR,%20MAHMOUD%20B.%20A.&rft.date=2023-07-01&rft.volume=65&rft.issue=3&rft.spage=273&rft.epage=284&rft.pages=273-284&rft.issn=1446-1811&rft.eissn=1446-8735&rft_id=info:doi/10.1017/S1446181123000214&rft_dat=%3Cproquest_cross%3E2955196640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2955196640&rft_id=info:pmid/&rft_cupid=10_1017_S1446181123000214&rfr_iscdi=true |