Deforestation poses deleterious effects to tree-climbing species under climate change

Habitat loss poses a major threat to global biodiversity. Many studies have explored the potential damages of deforestation to animal populations but few have considered trees as thermoregulatory microhabitats or addressed how tree loss might impact the fate of species under climate change. Using a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature climate change 2024-03, Vol.14 (3), p.289-295
Hauptverfasser: Zlotnick, Omer B., Musselman, Keith N., Levy, Ofir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Habitat loss poses a major threat to global biodiversity. Many studies have explored the potential damages of deforestation to animal populations but few have considered trees as thermoregulatory microhabitats or addressed how tree loss might impact the fate of species under climate change. Using a biophysical approach, we explore how tree loss might affect semi-arboreal diurnal ectotherms (lizards) under current and projected climates. We find that tree loss can reduce lizard population growth by curtailing activity time and length of the activity season. Although climate change can generally promote population growth for lizards, deforestation can reverse these positive effects for 66% of simulated populations and further accelerate population declines for another 18%. Our research underscores the mechanistic link between tree availability and population survival and growth, thus advocating for forest conservation and the integration of biophysical modelling and microhabitat diversity into conservation strategies, particularly in the face of climate change. The authors develop a biophysical model to understand the impacts of tree loss and climate change on the activity patterns and population trends of a diurnal ectotherm (lizard). They show that deforestation can reverse the positive effects of climate change and even accelerate population declines.
ISSN:1758-678X
1758-6798
DOI:10.1038/s41558-024-01939-x