Seiberg-like duality for resolutions of determinantal varieties

We study the genus-zero Gromov-Witten theory of two natural resolutions of determinantal varieties, termed the PAX and PAXY models. We realize each resolution as lying in a quiver bundle, and show that the respective quiver bundles are related by a quiver mutation. We prove that generating functions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Priddis, Nathan, Shoemaker, Mark, Wen, Yaoxiong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the genus-zero Gromov-Witten theory of two natural resolutions of determinantal varieties, termed the PAX and PAXY models. We realize each resolution as lying in a quiver bundle, and show that the respective quiver bundles are related by a quiver mutation. We prove that generating functions of genus-zero Gromov-Witten invariants for the two resolutions are related by a specific cluster change of variables. Along the way, we obtain a quantum Thom-Porteous formula for determinantal varieties and prove a Seiberg-like duality statement for certain quiver bundles.
ISSN:2331-8422