Seiberg-like duality for resolutions of determinantal varieties
We study the genus-zero Gromov-Witten theory of two natural resolutions of determinantal varieties, termed the PAX and PAXY models. We realize each resolution as lying in a quiver bundle, and show that the respective quiver bundles are related by a quiver mutation. We prove that generating functions...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the genus-zero Gromov-Witten theory of two natural resolutions of determinantal varieties, termed the PAX and PAXY models. We realize each resolution as lying in a quiver bundle, and show that the respective quiver bundles are related by a quiver mutation. We prove that generating functions of genus-zero Gromov-Witten invariants for the two resolutions are related by a specific cluster change of variables. Along the way, we obtain a quantum Thom-Porteous formula for determinantal varieties and prove a Seiberg-like duality statement for certain quiver bundles. |
---|---|
ISSN: | 2331-8422 |