JointMotion: Joint Self-Supervision for Joint Motion Prediction

We present JointMotion, a self-supervised pre-training method for joint motion prediction in self-driving vehicles. Our method jointly optimizes a scene-level objective connecting motion and environments, and an instance-level objective to refine learned representations. Scene-level representations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Wagner, Royden, Omer Sahin Tas, Klemp, Marvin, Fernandez, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present JointMotion, a self-supervised pre-training method for joint motion prediction in self-driving vehicles. Our method jointly optimizes a scene-level objective connecting motion and environments, and an instance-level objective to refine learned representations. Scene-level representations are learned via non-contrastive similarity learning of past motion sequences and environment context. At the instance level, we use masked autoencoding to refine multimodal polyline representations. We complement this with an adaptive pre-training decoder that enables JointMotion to generalize across different environment representations, fusion mechanisms, and dataset characteristics. Notably, our method reduces the joint final displacement error of Wayformer, HPTR, and Scene Transformer models by 3\%, 8\%, and 12\%, respectively; and enables transfer learning between the Waymo Open Motion and the Argoverse 2 Motion Forecasting datasets. Code: https://github.com/kit-mrt/future-motion
ISSN:2331-8422