Direct Minimization of the Canham–Helfrich Energy on Generalized Gauss Graphs

The existence of minimizers of the Canham–Helfrich functional in the setting of generalized Gauss graphs is proved. As a first step, the Canham–Helfrich functional, usually defined on regular surfaces, is extended to generalized Gauss graphs, then lower semicontinuity and compactness are proved unde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2024-05, Vol.34 (5), Article 121
Hauptverfasser: Kubin, Anna, Lussardi, Luca, Morandotti, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The existence of minimizers of the Canham–Helfrich functional in the setting of generalized Gauss graphs is proved. As a first step, the Canham–Helfrich functional, usually defined on regular surfaces, is extended to generalized Gauss graphs, then lower semicontinuity and compactness are proved under a suitable condition on the bending constants ensuring coerciveness; the minimization follows by the direct methods of the Calculus of Variations. Remarks on the regularity of minimizers and on the behavior of the functional in case there is lack of coerciveness are presented.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-024-01564-2