Fredholm Index of 3-Tuple of Restriction Operators and the Pair of Fringe Operators for Submodules in H2(D3)
For a submodule M in Hardy module H 2 ( D n ) on the unit polydisc in C n , we define the n - 1 tuple of fringe operators F = ( F 1 , F 2 , … , F n - 1 ) and the n tuple of restriction operators R = ( R z 1 , R z 2 , … , R z n ) with respect to M . In this paper, for the case n = 3 , it is shown tha...
Gespeichert in:
Veröffentlicht in: | Complex analysis and operator theory 2024-04, Vol.18 (3) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a submodule
M
in Hardy module
H
2
(
D
n
)
on the unit polydisc in
C
n
, we define the
n
-
1
tuple of fringe operators
F
=
(
F
1
,
F
2
,
…
,
F
n
-
1
)
and the
n
tuple of restriction operators
R
=
(
R
z
1
,
R
z
2
,
…
,
R
z
n
)
with respect to
M
. In this paper, for the case
n
=
3
, it is shown that the fringe operators
F
are Fredholm if and only if the tuple
R
-
λ
is Fredholm, where
λ
∈
D
3
, and moreover
i
n
d
(
F
)
=
-
i
n
d
(
R
-
λ
)
, which answer a question of Yang (Proc Am Math Soc 131 (2):533–541, 2003) partly and generalize a result of Luo et al. (J Math Anal Appl 465(1):531–546, 2018) in the case
n
=
2
. Finally, we also discuss the difference quotient operators in
H
2
(
D
n
)
, and apply them to explore the relationship between the fringe operators and compression operators on quotient module. |
---|---|
ISSN: | 1661-8254 1661-8262 |
DOI: | 10.1007/s11785-024-01498-1 |