The Smoluchowski-Kramers approximation with distribution-dependent potential and highly oscillating force

An approximation is derived for a Langevin equation with distribution-dependent potential and state-dependent, randomly fast oscillation. By some estimates and a diffusion approximation the limiting equation is shown to be distribution-dependent stochastic differential equation (SDEs) driven by whit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Shi, Chungang, Wang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An approximation is derived for a Langevin equation with distribution-dependent potential and state-dependent, randomly fast oscillation. By some estimates and a diffusion approximation the limiting equation is shown to be distribution-dependent stochastic differential equation (SDEs) driven by white noise.
ISSN:2331-8422