The Smoluchowski-Kramers approximation with distribution-dependent potential and highly oscillating force
An approximation is derived for a Langevin equation with distribution-dependent potential and state-dependent, randomly fast oscillation. By some estimates and a diffusion approximation the limiting equation is shown to be distribution-dependent stochastic differential equation (SDEs) driven by whit...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An approximation is derived for a Langevin equation with distribution-dependent potential and state-dependent, randomly fast oscillation. By some estimates and a diffusion approximation the limiting equation is shown to be distribution-dependent stochastic differential equation (SDEs) driven by white noise. |
---|---|
ISSN: | 2331-8422 |