Sinusoidal transmission grating spectrometer for extreme ultraviolet measurement

Spectral measurements play a vital role in understanding laser–plasma interactions. The ability to accurately measure the spectrum of radiation sources is crucial for unraveling the underlying physics. In this article, we introduce a novel approach that significantly enhances the efficiency of binar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2024-03, Vol.95 (3)
Hauptverfasser: Kliss, N., Wengrowicz, J., Papeer, J., Mazuz-Harpaz, Y., Porat, E., Zigler, A., Frank, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spectral measurements play a vital role in understanding laser–plasma interactions. The ability to accurately measure the spectrum of radiation sources is crucial for unraveling the underlying physics. In this article, we introduce a novel approach that significantly enhances the efficiency of binary sinusoidal transmission grating spectrometers . The grating was tailored especially for Extreme Ultraviolet (EUV) measurements. The new design, High Contrast Sinusoidal Transmission Grating (HCSTG), not only suppresses high diffraction orders and retains the advantageous properties of previous designs but also exhibits a fourfold improvement in first-order efficiency. In addition, the HCSTG offers exceptional purity in the first order due to effectively eliminating half-order contributions from the diffraction pattern. The HCSTG spectrometer was employed to measure the emission of laser-produced Sn plasma in the 1–50 nm spectral range, achieving a spectral resolution of λ/Δλ = 60. We provide a comprehensive analysis comparing the diffraction patterns of different STGs, highlighting the advantages offered by the HCSTG design. This novel, efficiency-enhanced HCSTG spectrometer opens up new possibilities for accurate and sensitive EUV spectral measurements.
ISSN:0034-6748
1089-7623
DOI:10.1063/5.0185687