Location and segmentation of important railway signs based on improved segmentation

PurposeWith the rapid development of railway-intelligent video technology, scene understanding is becoming more and more important. Semantic segmentation is a major part of scene understanding. There is an urgent need for an algorithm with high accuracy and real-time to meet the current railway requ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Smart and resilient transportation (Online) 2024-03, Vol.6 (1), p.21-31
Hauptverfasser: Zengqing, Wang, Xie, Zheng Yu, Yiling, Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:PurposeWith the rapid development of railway-intelligent video technology, scene understanding is becoming more and more important. Semantic segmentation is a major part of scene understanding. There is an urgent need for an algorithm with high accuracy and real-time to meet the current railway requirements for railway identification. In response to this demand, this paper aims to explore a variety of models, accurately locate and segment important railway signs based on the improved SegNeXt algorithm, supplement the railway safety protection system and improve the intelligent level of railway safety protection.Design/methodology/approachThis paper studies the performance of existing models on RailSem19 and explores the defects of each model through performance so as to further explore an algorithm model dedicated to railway semantic segmentation. In this paper, the authors explore the optimal solution of SegNeXt model for railway scenes and achieve the purpose of this paper by improving the encoder and decoder structure.FindingsThis paper proposes an improved SegNeXt algorithm: first, it explores the performance of various models on railways, studies the problems of semantic segmentation on railways and then analyzes the specific problems. On the basis of retaining the original excellent MSCAN encoder of SegNeXt, multiscale information fusion is used to further extract detailed features such as multihead attention and mask, solving the problem of inaccurate segmentation of current objects by the original SegNeXt algorithm. The improved algorithm is of great significance for the segmentation and recognition of railway signs.Research limitations/implicationsThe model constructed in this paper has advantages in the feature segmentation of distant small objects, but it still has the problem of segmentation fracture for the railway, which is not completely segmented. In addition, in the throat area, due to the complexity of the railway, the segmentation results are not accurate.Social implicationsThe identification and segmentation of railway signs based on the improved SegNeXt algorithm in this paper is of great significance for the understanding of existing railway scenes, which can greatly improve the classification and recognition ability of railway small object features and can greatly improve the degree of railway security.Originality/valueThis article introduces an enhanced version of the SegNeXt algorithm, which aims to improve the accuracy of semantic
ISSN:2632-0487
2632-0495
DOI:10.1108/SRT-10-2023-0010