Concurrent multiscale and multi‐material optimization method for natural vibration design of porous structures

This paper proposes a concurrent multiscale optimization method of macrostructure topology and microstructure shapes for porous structures, aimed at maximizing a specified natural frequency. The multi‐material distribution of the macrostructure and the shape of the microstructures are optimized by t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2024-04, Vol.125 (7), p.n/a
Hauptverfasser: Shimoda, Masatoshi, Fujita, Junpei, Al Ali, Musaddiq, Kamiya, Ayu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title International journal for numerical methods in engineering
container_volume 125
creator Shimoda, Masatoshi
Fujita, Junpei
Al Ali, Musaddiq
Kamiya, Ayu
description This paper proposes a concurrent multiscale optimization method of macrostructure topology and microstructure shapes for porous structures, aimed at maximizing a specified natural frequency. The multi‐material distribution of the macrostructure and the shape of the microstructures are optimized by topology and shape optimization, respectively. The homogenized properties of the porous materials are calculated using the homogenization method, and the homogenized elastic tensor and density are applied to the macrostructure. The optimum distribution of the porous material in the macrostructure is determined by a multi‐material topology optimization using the generalized solid isotropic material with penalization (GSIMP) method, which is a method to obtain multi‐material topology by implementing the successive binarization. The KS (Kreisselmeier–Steinhauser) function is introduced to solve the repeated natural frequencies issue that lies in the maximization of a specified natural frequency. An area‐constrained multiscale optimization problem is formulated as a distributed‐parameter optimization problem, and the sensitivity functions are derived using the Lagrange multiplier method and the adjoint variable method. Based on the obtained sensitivity functions, the design variables are updated using the H1 gradient method (i.e., a nonparametric shape/topology optimization method). The effectiveness of the proposed method for maximizing a specified natural frequency is confirmed through 2D and 3D numerical examples, in which the influences of sub‐regions of the macrostructure and anisotropic material of the microstructures are also investigated and the results are discussed.
doi_str_mv 10.1002/nme.7424
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2941976648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2941976648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-a3f70d842772a3dbf0acbfb20e2fb4e5abf4bb2ac2223a83f6d4281b5fe8763f3</originalsourceid><addsrcrecordid>eNp10MtKxDAUBuAgCo6j4CME3LjpmFubdinDeIFRN7oOSZtohjapSaqMKx_BZ_RJ7Fi3rg6H_-Mc-AE4xWiBESIXrtMLzgjbAzOMKp4hgvg-mI1RleVViQ_BUYwbhDDOEZ2BfuldPYSgXYLd0CYba9lqKF0zrd-fX51MOljZQt8n29kPmax3sNPpxTfQ-ACdTEMY8zerwhQ2OtpnB72BvQ9-iDCmMNSj0vEYHBjZRn3yN-fg6Wr1uLzJ1g_Xt8vLdVaTirJMUsNRUzLCOZG0UQbJWhlFkCZGMZ1LZZhSRNaEECpLaoqGkRKr3OiSF9TQOTib7vbBvw46JrHxQ3DjS0EqhiteFKwc1fmk6uBjDNqIPthOhq3ASOz6FGOfYtfnSLOJvttWb_914v5u9et_ADq7ezc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2941976648</pqid></control><display><type>article</type><title>Concurrent multiscale and multi‐material optimization method for natural vibration design of porous structures</title><source>Access via Wiley Online Library</source><creator>Shimoda, Masatoshi ; Fujita, Junpei ; Al Ali, Musaddiq ; Kamiya, Ayu</creator><creatorcontrib>Shimoda, Masatoshi ; Fujita, Junpei ; Al Ali, Musaddiq ; Kamiya, Ayu</creatorcontrib><description>This paper proposes a concurrent multiscale optimization method of macrostructure topology and microstructure shapes for porous structures, aimed at maximizing a specified natural frequency. The multi‐material distribution of the macrostructure and the shape of the microstructures are optimized by topology and shape optimization, respectively. The homogenized properties of the porous materials are calculated using the homogenization method, and the homogenized elastic tensor and density are applied to the macrostructure. The optimum distribution of the porous material in the macrostructure is determined by a multi‐material topology optimization using the generalized solid isotropic material with penalization (GSIMP) method, which is a method to obtain multi‐material topology by implementing the successive binarization. The KS (Kreisselmeier–Steinhauser) function is introduced to solve the repeated natural frequencies issue that lies in the maximization of a specified natural frequency. An area‐constrained multiscale optimization problem is formulated as a distributed‐parameter optimization problem, and the sensitivity functions are derived using the Lagrange multiplier method and the adjoint variable method. Based on the obtained sensitivity functions, the design variables are updated using the H1 gradient method (i.e., a nonparametric shape/topology optimization method). The effectiveness of the proposed method for maximizing a specified natural frequency is confirmed through 2D and 3D numerical examples, in which the influences of sub‐regions of the macrostructure and anisotropic material of the microstructures are also investigated and the results are discussed.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.7424</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>concurrent multiscale optimization ; Design optimization ; GSIMP method ; H1 gradient method ; Homogenization ; homogenization method ; Isotropic material ; Lagrange multiplier ; Macrostructure ; Maximization ; Microstructure ; multi‐material ; natural frequency ; Optimization ; Parameter sensitivity ; Porous materials ; Resonant frequencies ; Sensitivity ; Shape optimization ; Tensors ; Topology optimization</subject><ispartof>International journal for numerical methods in engineering, 2024-04, Vol.125 (7), p.n/a</ispartof><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-a3f70d842772a3dbf0acbfb20e2fb4e5abf4bb2ac2223a83f6d4281b5fe8763f3</citedby><cites>FETCH-LOGICAL-c2934-a3f70d842772a3dbf0acbfb20e2fb4e5abf4bb2ac2223a83f6d4281b5fe8763f3</cites><orcidid>0000-0001-8791-2122 ; 0000-0002-9011-5711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.7424$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.7424$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Shimoda, Masatoshi</creatorcontrib><creatorcontrib>Fujita, Junpei</creatorcontrib><creatorcontrib>Al Ali, Musaddiq</creatorcontrib><creatorcontrib>Kamiya, Ayu</creatorcontrib><title>Concurrent multiscale and multi‐material optimization method for natural vibration design of porous structures</title><title>International journal for numerical methods in engineering</title><description>This paper proposes a concurrent multiscale optimization method of macrostructure topology and microstructure shapes for porous structures, aimed at maximizing a specified natural frequency. The multi‐material distribution of the macrostructure and the shape of the microstructures are optimized by topology and shape optimization, respectively. The homogenized properties of the porous materials are calculated using the homogenization method, and the homogenized elastic tensor and density are applied to the macrostructure. The optimum distribution of the porous material in the macrostructure is determined by a multi‐material topology optimization using the generalized solid isotropic material with penalization (GSIMP) method, which is a method to obtain multi‐material topology by implementing the successive binarization. The KS (Kreisselmeier–Steinhauser) function is introduced to solve the repeated natural frequencies issue that lies in the maximization of a specified natural frequency. An area‐constrained multiscale optimization problem is formulated as a distributed‐parameter optimization problem, and the sensitivity functions are derived using the Lagrange multiplier method and the adjoint variable method. Based on the obtained sensitivity functions, the design variables are updated using the H1 gradient method (i.e., a nonparametric shape/topology optimization method). The effectiveness of the proposed method for maximizing a specified natural frequency is confirmed through 2D and 3D numerical examples, in which the influences of sub‐regions of the macrostructure and anisotropic material of the microstructures are also investigated and the results are discussed.</description><subject>concurrent multiscale optimization</subject><subject>Design optimization</subject><subject>GSIMP method</subject><subject>H1 gradient method</subject><subject>Homogenization</subject><subject>homogenization method</subject><subject>Isotropic material</subject><subject>Lagrange multiplier</subject><subject>Macrostructure</subject><subject>Maximization</subject><subject>Microstructure</subject><subject>multi‐material</subject><subject>natural frequency</subject><subject>Optimization</subject><subject>Parameter sensitivity</subject><subject>Porous materials</subject><subject>Resonant frequencies</subject><subject>Sensitivity</subject><subject>Shape optimization</subject><subject>Tensors</subject><subject>Topology optimization</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10MtKxDAUBuAgCo6j4CME3LjpmFubdinDeIFRN7oOSZtohjapSaqMKx_BZ_RJ7Fi3rg6H_-Mc-AE4xWiBESIXrtMLzgjbAzOMKp4hgvg-mI1RleVViQ_BUYwbhDDOEZ2BfuldPYSgXYLd0CYba9lqKF0zrd-fX51MOljZQt8n29kPmax3sNPpxTfQ-ACdTEMY8zerwhQ2OtpnB72BvQ9-iDCmMNSj0vEYHBjZRn3yN-fg6Wr1uLzJ1g_Xt8vLdVaTirJMUsNRUzLCOZG0UQbJWhlFkCZGMZ1LZZhSRNaEECpLaoqGkRKr3OiSF9TQOTib7vbBvw46JrHxQ3DjS0EqhiteFKwc1fmk6uBjDNqIPthOhq3ASOz6FGOfYtfnSLOJvttWb_914v5u9et_ADq7ezc</recordid><startdate>20240415</startdate><enddate>20240415</enddate><creator>Shimoda, Masatoshi</creator><creator>Fujita, Junpei</creator><creator>Al Ali, Musaddiq</creator><creator>Kamiya, Ayu</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8791-2122</orcidid><orcidid>https://orcid.org/0000-0002-9011-5711</orcidid></search><sort><creationdate>20240415</creationdate><title>Concurrent multiscale and multi‐material optimization method for natural vibration design of porous structures</title><author>Shimoda, Masatoshi ; Fujita, Junpei ; Al Ali, Musaddiq ; Kamiya, Ayu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-a3f70d842772a3dbf0acbfb20e2fb4e5abf4bb2ac2223a83f6d4281b5fe8763f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>concurrent multiscale optimization</topic><topic>Design optimization</topic><topic>GSIMP method</topic><topic>H1 gradient method</topic><topic>Homogenization</topic><topic>homogenization method</topic><topic>Isotropic material</topic><topic>Lagrange multiplier</topic><topic>Macrostructure</topic><topic>Maximization</topic><topic>Microstructure</topic><topic>multi‐material</topic><topic>natural frequency</topic><topic>Optimization</topic><topic>Parameter sensitivity</topic><topic>Porous materials</topic><topic>Resonant frequencies</topic><topic>Sensitivity</topic><topic>Shape optimization</topic><topic>Tensors</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimoda, Masatoshi</creatorcontrib><creatorcontrib>Fujita, Junpei</creatorcontrib><creatorcontrib>Al Ali, Musaddiq</creatorcontrib><creatorcontrib>Kamiya, Ayu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimoda, Masatoshi</au><au>Fujita, Junpei</au><au>Al Ali, Musaddiq</au><au>Kamiya, Ayu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concurrent multiscale and multi‐material optimization method for natural vibration design of porous structures</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2024-04-15</date><risdate>2024</risdate><volume>125</volume><issue>7</issue><epage>n/a</epage><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>This paper proposes a concurrent multiscale optimization method of macrostructure topology and microstructure shapes for porous structures, aimed at maximizing a specified natural frequency. The multi‐material distribution of the macrostructure and the shape of the microstructures are optimized by topology and shape optimization, respectively. The homogenized properties of the porous materials are calculated using the homogenization method, and the homogenized elastic tensor and density are applied to the macrostructure. The optimum distribution of the porous material in the macrostructure is determined by a multi‐material topology optimization using the generalized solid isotropic material with penalization (GSIMP) method, which is a method to obtain multi‐material topology by implementing the successive binarization. The KS (Kreisselmeier–Steinhauser) function is introduced to solve the repeated natural frequencies issue that lies in the maximization of a specified natural frequency. An area‐constrained multiscale optimization problem is formulated as a distributed‐parameter optimization problem, and the sensitivity functions are derived using the Lagrange multiplier method and the adjoint variable method. Based on the obtained sensitivity functions, the design variables are updated using the H1 gradient method (i.e., a nonparametric shape/topology optimization method). The effectiveness of the proposed method for maximizing a specified natural frequency is confirmed through 2D and 3D numerical examples, in which the influences of sub‐regions of the macrostructure and anisotropic material of the microstructures are also investigated and the results are discussed.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.7424</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0001-8791-2122</orcidid><orcidid>https://orcid.org/0000-0002-9011-5711</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2024-04, Vol.125 (7), p.n/a
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2941976648
source Access via Wiley Online Library
subjects concurrent multiscale optimization
Design optimization
GSIMP method
H1 gradient method
Homogenization
homogenization method
Isotropic material
Lagrange multiplier
Macrostructure
Maximization
Microstructure
multi‐material
natural frequency
Optimization
Parameter sensitivity
Porous materials
Resonant frequencies
Sensitivity
Shape optimization
Tensors
Topology optimization
title Concurrent multiscale and multi‐material optimization method for natural vibration design of porous structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concurrent%20multiscale%20and%20multi%E2%80%90material%20optimization%20method%20for%20natural%20vibration%20design%20of%20porous%20structures&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Shimoda,%20Masatoshi&rft.date=2024-04-15&rft.volume=125&rft.issue=7&rft.epage=n/a&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.7424&rft_dat=%3Cproquest_cross%3E2941976648%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2941976648&rft_id=info:pmid/&rfr_iscdi=true