Concurrent multiscale and multi‐material optimization method for natural vibration design of porous structures
This paper proposes a concurrent multiscale optimization method of macrostructure topology and microstructure shapes for porous structures, aimed at maximizing a specified natural frequency. The multi‐material distribution of the macrostructure and the shape of the microstructures are optimized by t...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2024-04, Vol.125 (7), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a concurrent multiscale optimization method of macrostructure topology and microstructure shapes for porous structures, aimed at maximizing a specified natural frequency. The multi‐material distribution of the macrostructure and the shape of the microstructures are optimized by topology and shape optimization, respectively. The homogenized properties of the porous materials are calculated using the homogenization method, and the homogenized elastic tensor and density are applied to the macrostructure. The optimum distribution of the porous material in the macrostructure is determined by a multi‐material topology optimization using the generalized solid isotropic material with penalization (GSIMP) method, which is a method to obtain multi‐material topology by implementing the successive binarization. The KS (Kreisselmeier–Steinhauser) function is introduced to solve the repeated natural frequencies issue that lies in the maximization of a specified natural frequency. An area‐constrained multiscale optimization problem is formulated as a distributed‐parameter optimization problem, and the sensitivity functions are derived using the Lagrange multiplier method and the adjoint variable method. Based on the obtained sensitivity functions, the design variables are updated using the H1 gradient method (i.e., a nonparametric shape/topology optimization method). The effectiveness of the proposed method for maximizing a specified natural frequency is confirmed through 2D and 3D numerical examples, in which the influences of sub‐regions of the macrostructure and anisotropic material of the microstructures are also investigated and the results are discussed. |
---|---|
ISSN: | 0029-5981 1097-0207 |
DOI: | 10.1002/nme.7424 |