Application of Deep Learning Reduced-Order Modeling for Single-Phase Flow in Faulted Porous Media
We apply reduced-order modeling (ROM) techniques to single-phase flow in faulted porous media, accounting for changing rock properties and fault geometry variations using a radial basis function mesh deformation method. This approach benefits from a mixed-dimensional framework that effectively manag...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We apply reduced-order modeling (ROM) techniques to single-phase flow in faulted porous media, accounting for changing rock properties and fault geometry variations using a radial basis function mesh deformation method. This approach benefits from a mixed-dimensional framework that effectively manages the resulting non-conforming mesh. To streamline complex and repetitive calculations such as sensitivity analysis and solution of inverse problems, we utilize the Deep Learning Reduced Order Model (DL-ROM). This non-intrusive neural network-based technique is evaluated against the traditional Proper Orthogonal Decomposition (POD) method across various scenarios, demonstrating DL-ROM's capacity to expedite complex analyses with promising accuracy and efficiency. |
---|---|
ISSN: | 2331-8422 |