Scalar curvature deformations with non-compact boundaries

We develop a general deformation principle for families of Riemannian metrics on smooth manifolds with possibly non-compact boundary, preserving lower scalar curvature bounds. The principle is used in order to strengthen boundary conditions, from mean convex to totally geodesic or doubling. The defo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
1. Verfasser: Frerichs, Helge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a general deformation principle for families of Riemannian metrics on smooth manifolds with possibly non-compact boundary, preserving lower scalar curvature bounds. The principle is used in order to strengthen boundary conditions, from mean convex to totally geodesic or doubling. The deformation principle preserves further geometric properties such as completeness and a given quasi-isometry type. As an application, we prove non-existence results for Riemannian metrics with (uniformly) positive scalar curvature and mean convex boundary.
ISSN:2331-8422