Extremal of Log-Sobolev Functionals and Li-Yau Estimate on RCD∗(K,N) Spaces

In this work, we study the extremal functions of the log-Sobolev functional on compact metric measure spaces satisfying the RCD ∗ ( K , N ) condition for K in R and N in ( 2 , ∞ ) . We show the existence, regularity and positivity of non-negative extremal functions. Based on these results, we prove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Potential analysis 2024-03, Vol.60 (3), p.935-964
Hauptverfasser: Drapeau, Samuel, Yin, Liming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we study the extremal functions of the log-Sobolev functional on compact metric measure spaces satisfying the RCD ∗ ( K , N ) condition for K in R and N in ( 2 , ∞ ) . We show the existence, regularity and positivity of non-negative extremal functions. Based on these results, we prove a Li-Yau type estimate for the logarithmic transform of any non-negative extremal functions of the log-Sobolev functional. As applications, we show a Harnack type inequality as well as lower and upper bounds for the non-negative extremal functions.
ISSN:0926-2601
1572-929X
DOI:10.1007/s11118-023-10075-8