Extremal of Log-Sobolev Functionals and Li-Yau Estimate on RCD∗(K,N) Spaces
In this work, we study the extremal functions of the log-Sobolev functional on compact metric measure spaces satisfying the RCD ∗ ( K , N ) condition for K in R and N in ( 2 , ∞ ) . We show the existence, regularity and positivity of non-negative extremal functions. Based on these results, we prove...
Gespeichert in:
Veröffentlicht in: | Potential analysis 2024-03, Vol.60 (3), p.935-964 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we study the extremal functions of the log-Sobolev functional on compact metric measure spaces satisfying the
RCD
∗
(
K
,
N
)
condition for
K
in
R
and
N
in
(
2
,
∞
)
. We show the existence, regularity and positivity of non-negative extremal functions. Based on these results, we prove a Li-Yau type estimate for the logarithmic transform of any non-negative extremal functions of the log-Sobolev functional. As applications, we show a Harnack type inequality as well as lower and upper bounds for the non-negative extremal functions. |
---|---|
ISSN: | 0926-2601 1572-929X |
DOI: | 10.1007/s11118-023-10075-8 |