Barile–Macchia resolutions

We construct cellular resolutions for monomial ideals via discrete Morse theory. In particular, we develop an algorithm to create homogeneous acyclic matchings and we call the cellular resolutions induced from these matchings Barile–Macchia resolutions. These resolutions are minimal for edge ideals...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics 2024-02, Vol.59 (2), p.413-472
Hauptverfasser: Chau, Trung, Kara, Selvi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct cellular resolutions for monomial ideals via discrete Morse theory. In particular, we develop an algorithm to create homogeneous acyclic matchings and we call the cellular resolutions induced from these matchings Barile–Macchia resolutions. These resolutions are minimal for edge ideals of weighted oriented forests and (most) cycles. As a result, we provide recursive formulas for graded Betti numbers and projective dimension. Furthermore, we compare Barile–Macchia resolutions to those created by Batzies and Welker and some well-known simplicial resolutions. Under certain assumptions, whenever the above resolutions are minimal, so are Barile–Macchia resolutions.
ISSN:0925-9899
1572-9192
DOI:10.1007/s10801-023-01293-9