Online Portfolio Selection with Long-Short Term Forecasting

This work considers an online portfolio selection problem with reward and risk criteria. We use short-term historical data to forecast the reward term, reflecting the current market trend. We use conditional value-at-risk estimated by long-term historical data to measure the investment risk implied...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations Research Forum 2022-12, Vol.3 (4), p.1-15, Article 56
Hauptverfasser: Li, Roujia, Liu, Jia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work considers an online portfolio selection problem with reward and risk criteria. We use short-term historical data to forecast the reward term, reflecting the current market trend. We use conditional value-at-risk estimated by long-term historical data to measure the investment risk implied in the market. We reformulate the online portfolio selection model with long-short term forecasting as a linear programming problem. Numerical experiments in various data sets examine the superior out-of-sample performance of the proposed model.
ISSN:2662-2556
2662-2556
DOI:10.1007/s43069-022-00169-1