Online Portfolio Selection with Long-Short Term Forecasting
This work considers an online portfolio selection problem with reward and risk criteria. We use short-term historical data to forecast the reward term, reflecting the current market trend. We use conditional value-at-risk estimated by long-term historical data to measure the investment risk implied...
Gespeichert in:
Veröffentlicht in: | Operations Research Forum 2022-12, Vol.3 (4), p.1-15, Article 56 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work considers an online portfolio selection problem with reward and risk criteria. We use short-term historical data to forecast the reward term, reflecting the current market trend. We use conditional value-at-risk estimated by long-term historical data to measure the investment risk implied in the market. We reformulate the online portfolio selection model with long-short term forecasting as a linear programming problem. Numerical experiments in various data sets examine the superior out-of-sample performance of the proposed model. |
---|---|
ISSN: | 2662-2556 2662-2556 |
DOI: | 10.1007/s43069-022-00169-1 |