Real-Time Streaming Data Analysis Using a Three-Way Classification Method for Sentimental Analysis
This article describes how recent advances in computing have led to an increase in the generation of data in fields such as social media, medical, power and others. With the rapid increase in internet users, social media has given power for sentiment analysis or opinion mining. It is a highly challe...
Gespeichert in:
Veröffentlicht in: | International journal of information technology and web engineering 2018-07, Vol.13 (3), p.99-111 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article describes how recent advances in computing have led to an increase in the generation of data in fields such as social media, medical, power and others. With the rapid increase in internet users, social media has given power for sentiment analysis or opinion mining. It is a highly challenging task for storing, querying and analyzing such types of data. This article aims at providing a solution to store, query and analyze streaming data using Apache Kafka as the platform and twitter data as an example for analysis. A three-way classification method is proposed for sentimental analysis of twitter data that combines both the approaches for knowledge-based and machine-learning using three stages namely emotion classification, word classification and sentiment classification. The hybrid three-way classification approach was evaluated using a sample of five query strings on twitter and compared with existing emotion classifier, polarity classifier and Naïve Bayes classifier for sentimental analysis. The accuracy of the results of the proposed approach is superior when compared to existing approaches. |
---|---|
ISSN: | 1554-1045 1554-1053 |
DOI: | 10.4018/IJITWE.2018070107 |