Illumination and Rotation Invariant Texture Representation for Face Recognition

This article presents a novel approach for illumination and rotation invariant texture representation for face recognition. A gradient transformation is used as illumination invariance property and a Galois Field for the rotation invariance property. The normalized cumulative histogram bin values of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer vision and image processing 2020-04, Vol.10 (2), p.58-69
Hauptverfasser: Kudari, Medha, Shivashankar S, Hiremath, Prakash S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents a novel approach for illumination and rotation invariant texture representation for face recognition. A gradient transformation is used as illumination invariance property and a Galois Field for the rotation invariance property. The normalized cumulative histogram bin values of the Gradient Galois Field transformed image represent the illumination and rotation invariant texture features. These features are further used as face descriptors. Experimentations are performed on FERET and extended Cohn Kanade databases. The results show that the proposed method is better as compared to Rotation Invariant Local Binary Pattern, Log-polar transform and Sorted Local Gradient Pattern and is illumination and rotation invariant.
ISSN:2155-6997
2155-6989
2155-6997
2155-6989
DOI:10.4018/IJCVIP.2020040105