Neutron and Hard X-Ray Pulses of the Plasma Focus Chamber at Discharge Currents of 100–200 kA

Neutron and hard X-ray (HXR) generation by plasma focus chambers operating as part of the ING-102E subkilojoule neutron generator with a storage capacity of 4.4 μF and an amplitude of the discharge current through the chamber electrodes in the range from 100 to 200 kA is considered. A T19-L316-type...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of atomic nuclei 2023-12, Vol.86 (10), p.2288-2294
Hauptverfasser: Yurkov, D. I., Lavrenin, V. A., Lemeshko, B. D., Mikhailov, Yu. V., Prokuratov, I. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neutron and hard X-ray (HXR) generation by plasma focus chambers operating as part of the ING-102E subkilojoule neutron generator with a storage capacity of 4.4 μF and an amplitude of the discharge current through the chamber electrodes in the range from 100 to 200 kA is considered. A T19-L316-type chamber is used, which ensures a neutron yield with an energy of 2.5 MeV at a level of 10 5 –10 7 neutrons/pulse. The level of the neutron and HXR yield of the T19-L316 chamber is measured, and the operating modes with the HXR generation without neutron radiation with deuterium filling of the chamber are revealed. The neutron pulse duration of the T19-L316 chamber is determined, and the duration dependence on the neutron yield level and on the composition of the working gas in the plasma focus chamber is studied. The plasma focus chamber operation in the mode without neutrons is experimentally confirmed when the chamber volume is filled with hydrogen. The level of the HXR yield when working with hydrogen, deuterium, and deuterium with an admixture of argon is compared. A T19-L316 chamber design for the neutron generation with a 100-fold reduced HXR yield implemented by the change in the original chamber design is proposed.
ISSN:1063-7788
1562-692X
DOI:10.1134/S1063778823100411