An intuitive fuzzy multi-attribute decision making method based on a herding psychology improved score function for trading decisions

The amount of used new energy vehicle transactions is increasing quickly as the social economy matures, yet prices are typically low, making it increasingly difficult to select a fair trading system. Enhancing the score function is crucial in order to account for how different people’s attitudes aff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2024-03, Vol.46 (3), p.7353-7365
Hauptverfasser: Zhang, Hong, Liu, Shaojie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The amount of used new energy vehicle transactions is increasing quickly as the social economy matures, yet prices are typically low, making it increasingly difficult to select a fair trading system. Enhancing the score function is crucial in order to account for how different people’s attitudes affect the outcome of decisions and to choose an acceptable trading strategy that is applicable to other scenarios and has a favorable impact on transaction flow. The choice of a trading scheme for new energy-using vehicles is usually regarded as a multi-attribute decision problem. In this paper, the Intuitionistic Fuzzy Hybrid Averaging (IFHA) operator integration operator with an improved score function is proposed based on the influence of herd mentality on decision-makers. In order to examine the correlation between the score function and the decision outcome using the Spearman rank correlation coefficient, an application to a real situation and some comparative analyses are provided. The outcomes demonstrate that the decision-making process for used car trading schemes can make use of the proposed improved score function.
ISSN:1064-1246
1875-8967
DOI:10.3233/JIFS-231358