Fano 4-folds with b2>12 are products of surfaces
Let X be a smooth, complex Fano 4-fold, and ρ X its Picard number. We show that if ρ X > 12 , then X is a product of del Pezzo surfaces. The proof relies on a careful study of divisorial elementary contractions f : X → Y such that dim f ( Exc ( f ) ) = 2 , together with the author’s previous work...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2024-04, Vol.236 (1), p.1-16 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
be a smooth, complex Fano 4-fold, and
ρ
X
its Picard number. We show that if
ρ
X
>
12
, then
X
is a product of del Pezzo surfaces. The proof relies on a careful study of divisorial elementary contractions
f
:
X
→
Y
such that
dim
f
(
Exc
(
f
)
)
=
2
, together with the author’s previous work on Fano 4-folds. In particular, given
f
:
X
→
Y
as above, under suitable assumptions we show that
S
:
=
f
(
Exc
(
f
)
)
is a smooth del Pezzo surface with
−
K
S
=
(
−
K
Y
)
|
S
. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-024-01236-6 |