Transchromatic phenomena in the equivariant slice spectral sequence
In this paper, we prove a transchromatic phenomenon for Hill--Hopkins--Ravenel and Lubin--Tate theories. This establishes a direct relationship between the equivariant slice spectral sequences of height-\(h\) and height-\((h/2)\) theories. As applications of this transchromatic phenomenon, we prove...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove a transchromatic phenomenon for Hill--Hopkins--Ravenel and Lubin--Tate theories. This establishes a direct relationship between the equivariant slice spectral sequences of height-\(h\) and height-\((h/2)\) theories. As applications of this transchromatic phenomenon, we prove periodicity and vanishing line results for these theories. |
---|---|
ISSN: | 2331-8422 |