In-situ growth of porous CoTe2 nanosheets array on 3D nickel foam for highly sensitive binder-free non-enzymatic glucose sensor
The combination of transition-metals with chalcogens provide a platform for developing highly sensitive and stable electro-catalyst materials possessing excellent electrochemical features regarding glucose oxidation. The growth of porous cobalt telluride (CoTe2) nanosheets (NSs) on a three-dimension...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2021-04, Vol.861, p.158642, Article 158642 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The combination of transition-metals with chalcogens provide a platform for developing highly sensitive and stable electro-catalyst materials possessing excellent electrochemical features regarding glucose oxidation. The growth of porous cobalt telluride (CoTe2) nanosheets (NSs) on a three-dimension (3D) nickel foam (NF) scaffold via anion-exchange transformation is achieved by employing low temperature scalable hydrothermal process. Being an active catalyst material for glucose detection, the CoTe2 NSs/NF electrode demonstrates an ultra-prompt response time of 0.1 s, boosting sensitivity of 168000 μA mM−1 cm−2, low limit of detection of 0.59 μM along with excellent anti-interference ability and favorable stability. Besides, the effective electrochemical performance of sensing electrode is recognized with respect to the glucose detection in real human blood serum. Overall, this material guarantees free-standing 3D architecture, interconnected porous NSs morphology, large specific surface area, high conductivity, and appealing electro-catalytic activity. Therefore, the porous CoTe2 NSs/NF binder-free electrode has a great application prospect as a promising biomimetic catalyst material for highly sensitive and efficient non-enzymatic glucose sensor.
[Display omitted]
•Direct in-situ hydrothermal growth of CoTe2 NSs on porous and conductive 3D-Nickel foam scaffold.•Free-standing porous CoTe2 NSs/NF architecture works as a binder-free electrode for non-enzymatic glucose sensing.•3D CoTe2 NSs/NF electrode offers ultra-prompt response time 0.1 s, boosting sensitivity 168000 μA mM−1 cm−2 and LOD 0.59 μM.•Remarkable anti-interference capability and favorable stability of CoTe2 NSs array.•Developed NEGS also demonstratesan effective determination of glucose concentration in human blood serum. |
---|---|
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2021.158642 |