Application of Machine Learning Techniques to Predict Software Reliability

In this paper, the authors employed machine learning techniques, specifically, Back propagation trained neural network (BPNN), Group method of data handling (GMDH), Counter propagation neural network (CPNN), Dynamic evolving neuro–fuzzy inference system (DENFIS), Genetic Programming (GP), TreeNet, s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied evolutionary computation 2010-07, Vol.1 (3), p.70-86
Hauptverfasser: Mohanty, Ramakanta, Ravi, V, Patra, M R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the authors employed machine learning techniques, specifically, Back propagation trained neural network (BPNN), Group method of data handling (GMDH), Counter propagation neural network (CPNN), Dynamic evolving neuro–fuzzy inference system (DENFIS), Genetic Programming (GP), TreeNet, statistical multiple linear regression (MLR), and multivariate adaptive regression splines (MARS), to accurately forecast software reliability. Their effectiveness is demonstrated on three datasets taken from literature, where performance is compared in terms of normalized root mean square error (NRMSE) obtained in the test set. From rigorous experiments conducted, it was observed that GP outperformed all techniques in all datasets, with GMDH coming a close second.
ISSN:1942-3594
1942-3608
DOI:10.4018/jaec.2010070104