Heat Storage Performance of PCM in a Novel Vertical Pointer-Shaped Finned Latent Heat Tank
The heat storage performance of latent heat storage systems is not good due to the poor thermal conductivity of phase change materials. In this paper, a new type of pointer-shaped fins combining rectangular and triangular fins has been employed to numerically simulate the melting process in the heat...
Gespeichert in:
Veröffentlicht in: | Journal of thermal science 2024-03, Vol.33 (2), p.422-434 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The heat storage performance of latent heat storage systems is not good due to the poor thermal conductivity of phase change materials. In this paper, a new type of pointer-shaped fins combining rectangular and triangular fins has been employed to numerically simulate the melting process in the heat storage tank, and the fin geometry parameter effects on heat storage performance have been studied. The results indicate that compared with the bare tube and the rectangular finned tank, the melting time of the phase change material in the pointer-shaped finned tank is reduced by 64.2% and 15.1%, respectively. The closer the tip of the triangular fin is to the hot wall, the better the heat transfer efficiency. The optimal height of the triangular fin is about 8 mm. Increasing the number of fins from 4 to 6 and from 6 to 8 reduces the melting time by 16.0% and 16.7% respectively. However, increasing the number of fins from 8 to 10 only reduces the melting time by 8.4%. When the fin dimensionless length is increased from 0.3 to 0.5 and from 0.5 to 0.7, the melting time is shortened by 17.5% and 13.0%. But the melting time is only reduced by 2.9% when the dimensionless fin length is increased from 0.7 to 0.9. For optimising the design of the thermal storage system, the results can provide a reference value. |
---|---|
ISSN: | 1003-2169 1993-033X |
DOI: | 10.1007/s11630-024-1910-7 |