A space–time DG method for the Schrödinger equation with variable potential

We present a space–time ultra-weak discontinuous Galerkin discretization of the linear Schrödinger equation with variable potential. The proposed method is well-posed and quasi-optimal in mesh-dependent norms for very general discrete spaces. Optimal  h -convergence error estimates are derived for t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in computational mathematics 2024-04, Vol.50 (2), Article 15
Hauptverfasser: Gómez, Sergio, Moiola, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a space–time ultra-weak discontinuous Galerkin discretization of the linear Schrödinger equation with variable potential. The proposed method is well-posed and quasi-optimal in mesh-dependent norms for very general discrete spaces. Optimal  h -convergence error estimates are derived for the method when test and trial spaces are chosen either as piecewise polynomials or as a novel quasi-Trefftz polynomial space. The latter allows for a substantial reduction of the number of degrees of freedom and admits piecewise-smooth potentials. Several numerical experiments validate the accuracy and advantages of the proposed method.
ISSN:1019-7168
1572-9044
DOI:10.1007/s10444-024-10108-9