Pseudo-Kähler Geometry of Properly Convex Projective Structures on the torus

In this paper we prove the existence of a pseudo-Kähler structure on the deformation space B 0 ( T 2 ) of properly convex R P 2 -structures over the torus. In particular, the pseudo-Riemannian metric and the symplectic form are compatible with the complex structure inherited from the identification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2024-04, Vol.34 (4), Article 116
Hauptverfasser: Rungi, Nicholas, Tamburelli, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title The Journal of geometric analysis
container_volume 34
creator Rungi, Nicholas
Tamburelli, Andrea
description In this paper we prove the existence of a pseudo-Kähler structure on the deformation space B 0 ( T 2 ) of properly convex R P 2 -structures over the torus. In particular, the pseudo-Riemannian metric and the symplectic form are compatible with the complex structure inherited from the identification of B 0 ( T 2 ) with the complement of the zero section of the total space of the bundle of cubic holomorphic differentials over the Teichmüller space. We show that the S 1 -action on B 0 ( T 2 ) , given by rotation of the fibers, is Hamiltonian and it preserves both the metric and the symplectic form. Finally, we prove the existence of a moment map for the SL ( 2 , R ) -action over B 0 ( T 2 ) .
doi_str_mv 10.1007/s12220-023-01491-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933808078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933808078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-49a4a1cdb2860fd0e284392744ec3197f1955e8054115bd198887fa3108164043</originalsourceid><addsrcrecordid>eNp9kM9KAzEQh4MoWKsv4CngOTr5s5vkKEWrWFFQwVvY7s7alnZTk2yx7-Ob-GJuXcGbp5mB7_cb-Ag55XDOAfRF5EIIYCAkA64sZ2aPDHiWWQYgXve7HTJguRX5ITmKcQGgcqn0gNw_Rmwrz-6-PmdLDHSMfoUpbKmv6WPwawzLLR35ZoMfu3uBZZpvkD6l0JapDRipb2iaIU0-tPGYHNTFMuLJ7xySl-ur59ENmzyMb0eXE1YKDYkpW6iCl9VUmBzqClAYJa3QSmEpudU1t1mGBjLFeTatuDXG6LqQHAzPFSg5JGd97zr49xZjcgvfhqZ76YSV0oABbTpK9FQZfIwBa7cO81URto6D22lzvTbXaXM_2twuJPtQ7ODmDcNf9T-pb6xSbzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933808078</pqid></control><display><type>article</type><title>Pseudo-Kähler Geometry of Properly Convex Projective Structures on the torus</title><source>Springer Nature - Complete Springer Journals</source><creator>Rungi, Nicholas ; Tamburelli, Andrea</creator><creatorcontrib>Rungi, Nicholas ; Tamburelli, Andrea</creatorcontrib><description>In this paper we prove the existence of a pseudo-Kähler structure on the deformation space B 0 ( T 2 ) of properly convex R P 2 -structures over the torus. In particular, the pseudo-Riemannian metric and the symplectic form are compatible with the complex structure inherited from the identification of B 0 ( T 2 ) with the complement of the zero section of the total space of the bundle of cubic holomorphic differentials over the Teichmüller space. We show that the S 1 -action on B 0 ( T 2 ) , given by rotation of the fibers, is Hamiltonian and it preserves both the metric and the symplectic form. Finally, we prove the existence of a moment map for the SL ( 2 , R ) -action over B 0 ( T 2 ) .</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-023-01491-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics ; Toruses</subject><ispartof>The Journal of geometric analysis, 2024-04, Vol.34 (4), Article 116</ispartof><rights>Mathematica Josephina, Inc. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-49a4a1cdb2860fd0e284392744ec3197f1955e8054115bd198887fa3108164043</cites><orcidid>0000-0003-4799-9213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-023-01491-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-023-01491-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Rungi, Nicholas</creatorcontrib><creatorcontrib>Tamburelli, Andrea</creatorcontrib><title>Pseudo-Kähler Geometry of Properly Convex Projective Structures on the torus</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>In this paper we prove the existence of a pseudo-Kähler structure on the deformation space B 0 ( T 2 ) of properly convex R P 2 -structures over the torus. In particular, the pseudo-Riemannian metric and the symplectic form are compatible with the complex structure inherited from the identification of B 0 ( T 2 ) with the complement of the zero section of the total space of the bundle of cubic holomorphic differentials over the Teichmüller space. We show that the S 1 -action on B 0 ( T 2 ) , given by rotation of the fibers, is Hamiltonian and it preserves both the metric and the symplectic form. Finally, we prove the existence of a moment map for the SL ( 2 , R ) -action over B 0 ( T 2 ) .</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Toruses</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQh4MoWKsv4CngOTr5s5vkKEWrWFFQwVvY7s7alnZTk2yx7-Ob-GJuXcGbp5mB7_cb-Ag55XDOAfRF5EIIYCAkA64sZ2aPDHiWWQYgXve7HTJguRX5ITmKcQGgcqn0gNw_Rmwrz-6-PmdLDHSMfoUpbKmv6WPwawzLLR35ZoMfu3uBZZpvkD6l0JapDRipb2iaIU0-tPGYHNTFMuLJ7xySl-ur59ENmzyMb0eXE1YKDYkpW6iCl9VUmBzqClAYJa3QSmEpudU1t1mGBjLFeTatuDXG6LqQHAzPFSg5JGd97zr49xZjcgvfhqZ76YSV0oABbTpK9FQZfIwBa7cO81URto6D22lzvTbXaXM_2twuJPtQ7ODmDcNf9T-pb6xSbzw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Rungi, Nicholas</creator><creator>Tamburelli, Andrea</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4799-9213</orcidid></search><sort><creationdate>20240401</creationdate><title>Pseudo-Kähler Geometry of Properly Convex Projective Structures on the torus</title><author>Rungi, Nicholas ; Tamburelli, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-49a4a1cdb2860fd0e284392744ec3197f1955e8054115bd198887fa3108164043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rungi, Nicholas</creatorcontrib><creatorcontrib>Tamburelli, Andrea</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rungi, Nicholas</au><au>Tamburelli, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudo-Kähler Geometry of Properly Convex Projective Structures on the torus</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>34</volume><issue>4</issue><artnum>116</artnum><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>In this paper we prove the existence of a pseudo-Kähler structure on the deformation space B 0 ( T 2 ) of properly convex R P 2 -structures over the torus. In particular, the pseudo-Riemannian metric and the symplectic form are compatible with the complex structure inherited from the identification of B 0 ( T 2 ) with the complement of the zero section of the total space of the bundle of cubic holomorphic differentials over the Teichmüller space. We show that the S 1 -action on B 0 ( T 2 ) , given by rotation of the fibers, is Hamiltonian and it preserves both the metric and the symplectic form. Finally, we prove the existence of a moment map for the SL ( 2 , R ) -action over B 0 ( T 2 ) .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-023-01491-8</doi><orcidid>https://orcid.org/0000-0003-4799-9213</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of geometric analysis, 2024-04, Vol.34 (4), Article 116
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2933808078
source Springer Nature - Complete Springer Journals
subjects Abstract Harmonic Analysis
Convex and Discrete Geometry
Differential Geometry
Dynamical Systems and Ergodic Theory
Fourier Analysis
Global Analysis and Analysis on Manifolds
Mathematics
Mathematics and Statistics
Toruses
title Pseudo-Kähler Geometry of Properly Convex Projective Structures on the torus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudo-K%C3%A4hler%20Geometry%20of%20Properly%20Convex%20Projective%20Structures%20on%20the%20torus&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Rungi,%20Nicholas&rft.date=2024-04-01&rft.volume=34&rft.issue=4&rft.artnum=116&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-023-01491-8&rft_dat=%3Cproquest_cross%3E2933808078%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933808078&rft_id=info:pmid/&rfr_iscdi=true