Pseudo-Kähler Geometry of Properly Convex Projective Structures on the torus
In this paper we prove the existence of a pseudo-Kähler structure on the deformation space B 0 ( T 2 ) of properly convex R P 2 -structures over the torus. In particular, the pseudo-Riemannian metric and the symplectic form are compatible with the complex structure inherited from the identification...
Gespeichert in:
Veröffentlicht in: | The Journal of geometric analysis 2024-04, Vol.34 (4), Article 116 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | The Journal of geometric analysis |
container_volume | 34 |
creator | Rungi, Nicholas Tamburelli, Andrea |
description | In this paper we prove the existence of a pseudo-Kähler structure on the deformation space
B
0
(
T
2
)
of properly convex
R
P
2
-structures over the torus. In particular, the pseudo-Riemannian metric and the symplectic form are compatible with the complex structure inherited from the identification of
B
0
(
T
2
)
with the complement of the zero section of the total space of the bundle of cubic holomorphic differentials over the Teichmüller space. We show that the
S
1
-action on
B
0
(
T
2
)
, given by rotation of the fibers, is Hamiltonian and it preserves both the metric and the symplectic form. Finally, we prove the existence of a moment map for the
SL
(
2
,
R
)
-action over
B
0
(
T
2
)
. |
doi_str_mv | 10.1007/s12220-023-01491-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933808078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933808078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-49a4a1cdb2860fd0e284392744ec3197f1955e8054115bd198887fa3108164043</originalsourceid><addsrcrecordid>eNp9kM9KAzEQh4MoWKsv4CngOTr5s5vkKEWrWFFQwVvY7s7alnZTk2yx7-Ob-GJuXcGbp5mB7_cb-Ag55XDOAfRF5EIIYCAkA64sZ2aPDHiWWQYgXve7HTJguRX5ITmKcQGgcqn0gNw_Rmwrz-6-PmdLDHSMfoUpbKmv6WPwawzLLR35ZoMfu3uBZZpvkD6l0JapDRipb2iaIU0-tPGYHNTFMuLJ7xySl-ur59ENmzyMb0eXE1YKDYkpW6iCl9VUmBzqClAYJa3QSmEpudU1t1mGBjLFeTatuDXG6LqQHAzPFSg5JGd97zr49xZjcgvfhqZ76YSV0oABbTpK9FQZfIwBa7cO81URto6D22lzvTbXaXM_2twuJPtQ7ODmDcNf9T-pb6xSbzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933808078</pqid></control><display><type>article</type><title>Pseudo-Kähler Geometry of Properly Convex Projective Structures on the torus</title><source>Springer Nature - Complete Springer Journals</source><creator>Rungi, Nicholas ; Tamburelli, Andrea</creator><creatorcontrib>Rungi, Nicholas ; Tamburelli, Andrea</creatorcontrib><description>In this paper we prove the existence of a pseudo-Kähler structure on the deformation space
B
0
(
T
2
)
of properly convex
R
P
2
-structures over the torus. In particular, the pseudo-Riemannian metric and the symplectic form are compatible with the complex structure inherited from the identification of
B
0
(
T
2
)
with the complement of the zero section of the total space of the bundle of cubic holomorphic differentials over the Teichmüller space. We show that the
S
1
-action on
B
0
(
T
2
)
, given by rotation of the fibers, is Hamiltonian and it preserves both the metric and the symplectic form. Finally, we prove the existence of a moment map for the
SL
(
2
,
R
)
-action over
B
0
(
T
2
)
.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-023-01491-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics ; Toruses</subject><ispartof>The Journal of geometric analysis, 2024-04, Vol.34 (4), Article 116</ispartof><rights>Mathematica Josephina, Inc. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-49a4a1cdb2860fd0e284392744ec3197f1955e8054115bd198887fa3108164043</cites><orcidid>0000-0003-4799-9213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-023-01491-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-023-01491-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Rungi, Nicholas</creatorcontrib><creatorcontrib>Tamburelli, Andrea</creatorcontrib><title>Pseudo-Kähler Geometry of Properly Convex Projective Structures on the torus</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>In this paper we prove the existence of a pseudo-Kähler structure on the deformation space
B
0
(
T
2
)
of properly convex
R
P
2
-structures over the torus. In particular, the pseudo-Riemannian metric and the symplectic form are compatible with the complex structure inherited from the identification of
B
0
(
T
2
)
with the complement of the zero section of the total space of the bundle of cubic holomorphic differentials over the Teichmüller space. We show that the
S
1
-action on
B
0
(
T
2
)
, given by rotation of the fibers, is Hamiltonian and it preserves both the metric and the symplectic form. Finally, we prove the existence of a moment map for the
SL
(
2
,
R
)
-action over
B
0
(
T
2
)
.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Toruses</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQh4MoWKsv4CngOTr5s5vkKEWrWFFQwVvY7s7alnZTk2yx7-Ob-GJuXcGbp5mB7_cb-Ag55XDOAfRF5EIIYCAkA64sZ2aPDHiWWQYgXve7HTJguRX5ITmKcQGgcqn0gNw_Rmwrz-6-PmdLDHSMfoUpbKmv6WPwawzLLR35ZoMfu3uBZZpvkD6l0JapDRipb2iaIU0-tPGYHNTFMuLJ7xySl-ur59ENmzyMb0eXE1YKDYkpW6iCl9VUmBzqClAYJa3QSmEpudU1t1mGBjLFeTatuDXG6LqQHAzPFSg5JGd97zr49xZjcgvfhqZ76YSV0oABbTpK9FQZfIwBa7cO81URto6D22lzvTbXaXM_2twuJPtQ7ODmDcNf9T-pb6xSbzw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Rungi, Nicholas</creator><creator>Tamburelli, Andrea</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4799-9213</orcidid></search><sort><creationdate>20240401</creationdate><title>Pseudo-Kähler Geometry of Properly Convex Projective Structures on the torus</title><author>Rungi, Nicholas ; Tamburelli, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-49a4a1cdb2860fd0e284392744ec3197f1955e8054115bd198887fa3108164043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rungi, Nicholas</creatorcontrib><creatorcontrib>Tamburelli, Andrea</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rungi, Nicholas</au><au>Tamburelli, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudo-Kähler Geometry of Properly Convex Projective Structures on the torus</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>34</volume><issue>4</issue><artnum>116</artnum><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>In this paper we prove the existence of a pseudo-Kähler structure on the deformation space
B
0
(
T
2
)
of properly convex
R
P
2
-structures over the torus. In particular, the pseudo-Riemannian metric and the symplectic form are compatible with the complex structure inherited from the identification of
B
0
(
T
2
)
with the complement of the zero section of the total space of the bundle of cubic holomorphic differentials over the Teichmüller space. We show that the
S
1
-action on
B
0
(
T
2
)
, given by rotation of the fibers, is Hamiltonian and it preserves both the metric and the symplectic form. Finally, we prove the existence of a moment map for the
SL
(
2
,
R
)
-action over
B
0
(
T
2
)
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-023-01491-8</doi><orcidid>https://orcid.org/0000-0003-4799-9213</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-6926 |
ispartof | The Journal of geometric analysis, 2024-04, Vol.34 (4), Article 116 |
issn | 1050-6926 1559-002X |
language | eng |
recordid | cdi_proquest_journals_2933808078 |
source | Springer Nature - Complete Springer Journals |
subjects | Abstract Harmonic Analysis Convex and Discrete Geometry Differential Geometry Dynamical Systems and Ergodic Theory Fourier Analysis Global Analysis and Analysis on Manifolds Mathematics Mathematics and Statistics Toruses |
title | Pseudo-Kähler Geometry of Properly Convex Projective Structures on the torus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudo-K%C3%A4hler%20Geometry%20of%20Properly%20Convex%20Projective%20Structures%20on%20the%20torus&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Rungi,%20Nicholas&rft.date=2024-04-01&rft.volume=34&rft.issue=4&rft.artnum=116&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-023-01491-8&rft_dat=%3Cproquest_cross%3E2933808078%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933808078&rft_id=info:pmid/&rfr_iscdi=true |