Pseudo-Kähler Geometry of Properly Convex Projective Structures on the torus

In this paper we prove the existence of a pseudo-Kähler structure on the deformation space B 0 ( T 2 ) of properly convex R P 2 -structures over the torus. In particular, the pseudo-Riemannian metric and the symplectic form are compatible with the complex structure inherited from the identification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2024-04, Vol.34 (4), Article 116
Hauptverfasser: Rungi, Nicholas, Tamburelli, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we prove the existence of a pseudo-Kähler structure on the deformation space B 0 ( T 2 ) of properly convex R P 2 -structures over the torus. In particular, the pseudo-Riemannian metric and the symplectic form are compatible with the complex structure inherited from the identification of B 0 ( T 2 ) with the complement of the zero section of the total space of the bundle of cubic holomorphic differentials over the Teichmüller space. We show that the S 1 -action on B 0 ( T 2 ) , given by rotation of the fibers, is Hamiltonian and it preserves both the metric and the symplectic form. Finally, we prove the existence of a moment map for the SL ( 2 , R ) -action over B 0 ( T 2 ) .
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-023-01491-8