Pseudo-Kähler Geometry of Properly Convex Projective Structures on the torus
In this paper we prove the existence of a pseudo-Kähler structure on the deformation space B 0 ( T 2 ) of properly convex R P 2 -structures over the torus. In particular, the pseudo-Riemannian metric and the symplectic form are compatible with the complex structure inherited from the identification...
Gespeichert in:
Veröffentlicht in: | The Journal of geometric analysis 2024-04, Vol.34 (4), Article 116 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we prove the existence of a pseudo-Kähler structure on the deformation space
B
0
(
T
2
)
of properly convex
R
P
2
-structures over the torus. In particular, the pseudo-Riemannian metric and the symplectic form are compatible with the complex structure inherited from the identification of
B
0
(
T
2
)
with the complement of the zero section of the total space of the bundle of cubic holomorphic differentials over the Teichmüller space. We show that the
S
1
-action on
B
0
(
T
2
)
, given by rotation of the fibers, is Hamiltonian and it preserves both the metric and the symplectic form. Finally, we prove the existence of a moment map for the
SL
(
2
,
R
)
-action over
B
0
(
T
2
)
. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-023-01491-8 |