Securing Data Center Against Power Attacks

Modern data centers employ complex and specialized power management architectures in the pursuit of energy and thermal efficiency. Interestingly, this rising complexity has exposed a new attack surface in an already vulnerable environment. In this work, we uncover a potent threat stemming from a com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hardware and systems security 2019-06, Vol.3 (2), p.177-188
Hauptverfasser: JS, Rajesh, Rajamanikkam, Chidhambaranathan, Chakraborty, Koushik, Roy, Sanghamitra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modern data centers employ complex and specialized power management architectures in the pursuit of energy and thermal efficiency. Interestingly, this rising complexity has exposed a new attack surface in an already vulnerable environment. In this work, we uncover a potent threat stemming from a compromised power management module in the hypervisor to motivate the need to safeguard the data centers from power attacks. HyperAttack — an internal power attack —maliciously increases the data center power consumption by more than 70 % , while minimally affecting the service level agreement. We propose a machine learning-based secure architecture, SCALE , to detect anomalous power consumption behavior and prevent against power outages due to HyperAttack escalations. SCALE delivers 99 % classification accuracy, with a maximum false positive rate of 3.8 % .
ISSN:2509-3428
2509-3436
DOI:10.1007/s41635-019-0064-7