αSetup-AMG: an adaptive-setup-based parallel AMG solver for sequence of sparse linear systems
The algebraic multigrain (AMG) is one of the most frequently used algorithms for the solution of large-scale sparse linear systems in many realistic simulations of science and engineering applications. However, as the concurrency of supercomputers increasing, the AMG solver increasingly leads to poo...
Gespeichert in:
Veröffentlicht in: | CCF transactions on high performance computing (Online) 2020-06, Vol.2 (2), p.98-110 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The algebraic multigrain (AMG) is one of the most frequently used algorithms for the solution of large-scale sparse linear systems in many realistic simulations of science and engineering applications. However, as the concurrency of supercomputers increasing, the AMG solver increasingly leads to poor parallel scalability due to its coarse-level construction in the setup phase. In this paper, to improve the parallel scalability of the traditional AMG to solve the sequence of sparse linear systems arising from PDE-based simulations, we propose a new AMG procedure called
αSetup-AMG
based on an adaptive setup strategy. The main idea behind
αSetup-AMG
is the introduction of a setup condition in the coarsening process so that the setup is constructed as it needed instead of constructing in advance via an independent phase in the traditional procedure. As a result,
αSetup-AMG
requires fewer setup cost and level numbers for the sequence of linear systems. The numerical results on thousands of cores for a radiation hydrodynamics simulation in the inertial confinement fusion (ICF) application show the significant improvement in the efficiency of the
αSetup-AMG
solver. |
---|---|
ISSN: | 2524-4922 2524-4930 |
DOI: | 10.1007/s42514-020-00033-w |