Symbolic Powers of Classical Varieties

Let \(R=\mathbb{K}[x_1,\dots,x_n]\) and \(\mathfrak{a}_1,\dots,\mathfrak{a}_m\) are homogeneous ideals satisfying certain properties, which includes a description of the Noetherian symbolic Rees algebra. Then, we compute the Waldschmidt constant and resurgence and show that it exhibits a stronger ve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Kumar, Arvind, Mukundan, Vivek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(R=\mathbb{K}[x_1,\dots,x_n]\) and \(\mathfrak{a}_1,\dots,\mathfrak{a}_m\) are homogeneous ideals satisfying certain properties, which includes a description of the Noetherian symbolic Rees algebra. Then, we compute the Waldschmidt constant and resurgence and show that it exhibits a stronger version of the Chudnovsky and Demailly-type bounds. We further show that these properties are satisfied for classical varieties such as the generic determinantal ideals, minors of generic symmetric matrices, generic extended Hankel matrices, and ideal of pfaffians of skew-symmetric matrices.
ISSN:2331-8422