Symbolic Powers of Classical Varieties
Let \(R=\mathbb{K}[x_1,\dots,x_n]\) and \(\mathfrak{a}_1,\dots,\mathfrak{a}_m\) are homogeneous ideals satisfying certain properties, which includes a description of the Noetherian symbolic Rees algebra. Then, we compute the Waldschmidt constant and resurgence and show that it exhibits a stronger ve...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(R=\mathbb{K}[x_1,\dots,x_n]\) and \(\mathfrak{a}_1,\dots,\mathfrak{a}_m\) are homogeneous ideals satisfying certain properties, which includes a description of the Noetherian symbolic Rees algebra. Then, we compute the Waldschmidt constant and resurgence and show that it exhibits a stronger version of the Chudnovsky and Demailly-type bounds. We further show that these properties are satisfied for classical varieties such as the generic determinantal ideals, minors of generic symmetric matrices, generic extended Hankel matrices, and ideal of pfaffians of skew-symmetric matrices. |
---|---|
ISSN: | 2331-8422 |