Coulomb mechanism of Raman radiation in graphene
The phenomena of single-layer graphene resonant photoluminescence and Raman radiation are discussed taking into account the photo-generated electron–hole Coulomb interaction. On the base of general principles of a many-particle interactions and the interband resonance optical transitions a photon ra...
Gespeichert in:
Veröffentlicht in: | Carbon Letters 2021-10, Vol.31 (5), p.1051-1059 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The phenomena of single-layer graphene resonant photoluminescence and Raman radiation are discussed taking into account the photo-generated electron–hole Coulomb interaction. On the base of general principles of a many-particle interactions and the interband resonance optical transitions a photon radiation new mechanism (Coulomb mechanism) is proposed. Through Stokes 2D'-mode particular case analysis has shown that the graphene photoluminescence and the resonant Raman radiation are characterized by the same frequency shifts. Probabilities of resonance photo-radiation processes have been presented where the electron–hole Coulomb attraction has been taken into account. The probabilities are the same fourth-order small values. The weak photo-radiation Coulomb mechanism has a common character. It is applicable to both zero and nonzero band gap crystals. |
---|---|
ISSN: | 1976-4251 2233-4998 |
DOI: | 10.1007/s42823-020-00220-3 |