Where Have All the Grasshoppers Gone?

Let P be an N-element point set in the plane. Consider N (pointlike) grasshoppers sitting at different points of P. In a "legal" move, any one of them can jump over another, and land on its other side at exactly the same distance. After a finite number of legal moves, can the grasshoppers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American mathematical monthly 2024-03, Vol.131 (3), p.204-212
Hauptverfasser: Pach, János, Tardos, Gábor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let P be an N-element point set in the plane. Consider N (pointlike) grasshoppers sitting at different points of P. In a "legal" move, any one of them can jump over another, and land on its other side at exactly the same distance. After a finite number of legal moves, can the grasshoppers end up at a point set, similar to, but larger than P? We present a linear algebraic approach to answer this question. In particular, we solve a problem of Brunck by showing that the answer is yes if P is the vertex set of a regular N-gon and N ≠ 3 , 4 , 6 . Some generalizations are also considered.
ISSN:0002-9890
1930-0972
DOI:10.1080/00029890.2023.2284611