Enhancement of fungal cellulase production using pretreated orange peel waste and its application in improved bioconversion of rice husk under the influence of nickel cobaltite nanoparticles
Cellulases are the enzymes of enormous industrial interests. In this study, solid-state fermentation (SSF) of alkali-pretreated orange peel waste has been evaluated to produce fungal cellulase. Different concentrations of alkali solution for the pretreatment of substrate and its impact to maximize t...
Gespeichert in:
Veröffentlicht in: | Biomass conversion and biorefinery 2024-03, Vol.14 (5), p.6687-6696 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cellulases are the enzymes of enormous industrial interests. In this study, solid-state fermentation (SSF) of alkali-pretreated orange peel waste has been evaluated to produce fungal cellulase. Different concentrations of alkali solution for the pretreatment of substrate and its impact to maximize the cellulase production have been investigated. Furthermore, process parameters of SSF including different substrate amount, different particle size of substrate, and impact of different moisture contents have been analyzed to achieve maximum cellulase production under the optimized conditions which include pretreatment using 1.0% alkali solution, 7.0 g substrate, 2.2 mm particle size of substrate, and 65% moisture content, wherein fungal strain
Emericella variecolor
NS3 exhibited the highest cellulase production of 39 IU/gds FP (filter paper cellulase), 236 IU/gds EG (endoglucanase), and 197 IU/gds BGL (β-glucosidase). The produced raw enzyme holds improved thermal and pH stability up to 3.5 h at 65 °C and over pH 4.0–6.0 in the presence of 1.0% nickel cobaltite nanoparticles (NiCo
2
O
4
NPs). Consequently, NiCo
2
O
4
NP–stabilized enzyme exhibited improved hydrolytic efficiency for alkali-pretreated rice husk as compared to control enzyme system. This work may be potentially applied for the mass-scale production of enzyme using orange wastes at industrial scale.
Graphical abstract |
---|---|
ISSN: | 2190-6815 2190-6823 |
DOI: | 10.1007/s13399-022-03070-3 |