Microstructure and electrical properties of carbon short fiber reinforced copper composites fabricated by electroless deposition followed by powder metallurgy process

Carbon short fibers/copper composites with different carbon short fiber contents up to 15 wt.% as reinforcements are prepared to investigate the influence of the carbon short fiber surface coating on the microstructure, density, and electrical properties of the carbon short fibers/copper composites....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon Letters 2020-06, Vol.30 (3), p.247-258
Hauptverfasser: Daoush, Walid M., Alkhuraiji, Turki S., Khamis, Moath A., Albogmy, Turki S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbon short fibers/copper composites with different carbon short fiber contents up to 15 wt.% as reinforcements are prepared to investigate the influence of the carbon short fiber surface coating on the microstructure, density, and electrical properties of the carbon short fibers/copper composites. The carbon short fibers were surface treated by acid functionalization followed by alkaline treatment before the coating process. It was observed from the results that coated type copper nanoparticles were deposited on the surface of the carbon short fibers. The surface treated carbon short fibers were coated by copper using the electroless deposition technique in the alkaline tartrate bath by using formaldehyde as a reducing agent of the copper sulfate. The produced coated carbon short fibers/copper composite powders were cold compacted at 600 MPa, and then sintered at 875 °C for 2 h under (hydrogen/nitrogen 1:3) atmosphere. A reference copper sample was also prepared by the same method to compare between the properties of pure copper and the carbon short fibers/copper composites. The phase composition, morphology, and microstructure of the prepared carbon short fibers/copper composite powders as well as the corresponding carbon short fibers/copper composites were investigated using X-ray diffraction analysis (XRD) and scanning electron microscope (SEM) equipped with an energy-dispersive spectrometer (EDS), respectively. The density and the electrical resistivity of the sintered composites were measured. It was observed from the results that the density was decreased; however, the electrical resistivity was increased by increasing the carbon short fibers wt.%.
ISSN:1976-4251
2233-4998
DOI:10.1007/s42823-019-00093-1