Valorization of bio‐calcium carbonate based Chamelea gallina shell waste fillers in shape memory polymer composites

In recent years, the focus has been on the use of calcium carbonate‐based seashell wastes in the production of new thermoplastic and thermoset polymer materials, paving the way for their use as biofillers in polymeric composites. In this study, it is aimed to obtain a new polymeric composite materia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2024-04, Vol.141 (14), p.n/a
Hauptverfasser: Selçuk Pekdemir, Sibel, Onay, Hatice, Özen Öner, Ecem, Pekdemir, Mustafa Ersin, Kök, Mediha, Ateş, Burhan, Aydoğdu, Yıldırım, Dalgıç, Göktuğ
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, the focus has been on the use of calcium carbonate‐based seashell wastes in the production of new thermoplastic and thermoset polymer materials, paving the way for their use as biofillers in polymeric composites. In this study, it is aimed to obtain a new polymeric composite material by doping Chamelea gallina shells, on polylactic acid (PLA)/polyethylene glycol (PEG) blend. Structural characterization of the obtained PLA/PEG blend/C. gallina composite films was performed with attenuated total reflection infrared spectroscopy (ATR‐IR). When the thermal properties of composite materials were examined by thermogravimetric analysis (TGA), it was determined that the thermal stability of polymeric composites increased with the addition of C. gallina. SEM images showed that the polymer blend films, which appeared to have a porous structure, filled the pores with increasing C. gallina ratio. It was observed that the biodegradability of PLA/PEG blend composite films decreased with increasing C. gallina shells addition. However, C. gallina had a positive effect on the swelling and water absorption capacities of polymeric composites. The increase in tensile strength and elongation at break values of PLA/PEG blend/C. gallina composite films with increasing C. gallina means that the mechanical properties of the polymer are improved. Preparation PLA/PEG blend/C.gallina composite films by solvent casting.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.55187