Physical and chemical parameters determining the formation of gold-sp metal (Al, Ga, In, and Pb) nanoalloys

Alloying is a key step towards the fabrication of advanced and unique nanomaterials demanded by the next generation of nanotechnology solutions. In particular, the alloys of Au with the sp-metals are expected to have several appealing plasmonic and electronic properties for a wide range of applicati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2024-02, Vol.16 (9), p.4745-4759
Hauptverfasser: Coviello, Vito, Forrer, Daniel, Canton, Patrizia, Amendola, Vincenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alloying is a key step towards the fabrication of advanced and unique nanomaterials demanded by the next generation of nanotechnology solutions. In particular, the alloys of Au with the sp-metals are expected to have several appealing plasmonic and electronic properties for a wide range of applications in optics, catalysis, nanomedicine, sensing and quantum devices. However, little is known about the thermodynamic and synthetic factors leading to the successful alloying of Au and sp-metals at the nanoscale. In this work, Au-M nanoalloys, with M = Al, Ga, In, or Pb, have been synthesized by a green and single step laser ablation in liquid (LAL) approach in two environments (pure ethanol and anhydrous acetone). To delve deeper into the key parameters leading to successful alloying under the typical operating conditions of LAL, a multiparametric analysis was performed considering the mixing enthalpy from DFT calculations and other alloying descriptors such as the Hume-Rothery parameters. The results showed that the dominant factors for alloying change dramatically with the oxidative ability of the synthesis environment. In this way, the tendency of the four sp metals to alloy with gold was accurately predicted ( R 2 > 0.99) using only two and three parameters in anhydrous and non-anhydrous environments, respectively. These results are important to produce nanoalloys using LAL and other physical methods because they contribute to the understanding of factors leading to element mixing at the nanoscale under real synthetic conditions, which is crucial for guiding the realization of next-generation multifunctional metallic nanostructures. Gold-sp metal (Al, Ga, In, and Pb) nanoalloy formation via laser ablation in liquid evidenced that alloying rules are solvent-dependent and can be described with only two parameters in acetone ( R 2 0.98812) and three parameters in ethanol ( R 2 0.99393).
ISSN:2040-3364
2040-3372
DOI:10.1039/d3nr04750d