(E\)-theory is compactly assembled

We show that the equivariant \(E\)-theory category \(\mathrm{E}_{\mathrm{sep}}^{G}\) for separable \(C^{*}\)-algebras is a compactly assembled stable \(\infty\)-category. We derive this result as a consequence of the shape theory for \(C^{*}\)-algebras developed by Blackadar and Dardarlat and a new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Bunke, Ulrich, Duenzinger, Benjamin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the equivariant \(E\)-theory category \(\mathrm{E}_{\mathrm{sep}}^{G}\) for separable \(C^{*}\)-algebras is a compactly assembled stable \(\infty\)-category. We derive this result as a consequence of the shape theory for \(C^{*}\)-algebras developed by Blackadar and Dardarlat and a new construction of \(\mathrm{E}_{\mathrm{sep}}^{G}\). As an application we investigate a topological enrichment of the homotopy category of a compactly assembled \(\infty\)-category in general and argue that the results of Carrión and Schafhauser on the enrichment of the classical \(E\)-theory category can be derived by specialization.
ISSN:2331-8422