Stability of Periodic Peakons for a Nonlinear Quartic μ-Camassa–Holm Equation

In this paper, we prove the orbital stability of periodic peaked traveling waves (peakons) for a nonlinear quartic μ -Camassa–Holm equation. The equation is a μ -version of the nonlinear quartic Camassa–Holm equation which was proposed by Anco and Recio (J Phys A Math Theor 52:125–203, 2019). The eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamics and differential equations 2024-03, Vol.36 (1), p.703-725
1. Verfasser: Moon, Byungsoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove the orbital stability of periodic peaked traveling waves (peakons) for a nonlinear quartic μ -Camassa–Holm equation. The equation is a μ -version of the nonlinear quartic Camassa–Holm equation which was proposed by Anco and Recio (J Phys A Math Theor 52:125–203, 2019). The equation admits the periodic peakons. It is shown that the periodic peakons are orbitally stable under small perturbations in the energy space by finding inequalities related to the three conservation laws with global maximum and minimum of the solution.
ISSN:1040-7294
1572-9222
DOI:10.1007/s10884-022-10156-z