Periodic Capillary-Gravity Water Waves of Small Amplitude

In this paper, we investigate two-dimensional capillary-gravity water waves of small amplitude, which propagate over a flat bed. We prove the existence of a local curve of solutions by using the Crandall–Rabinowitz local bifurcation theory, and show the uniqueness for the capillary-gravity water wav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical fluid mechanics 2024-05, Vol.26 (2), Article 23
Hauptverfasser: Li, Qixiang, Wang, JinRong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate two-dimensional capillary-gravity water waves of small amplitude, which propagate over a flat bed. We prove the existence of a local curve of solutions by using the Crandall–Rabinowitz local bifurcation theory, and show the uniqueness for the capillary-gravity water waves. Furthermore, we recover the dispersion relation for the constant vorticity setting. Moreover, we present a formal stability result for the bifurcation of the laminar solution. In addition, we prove the analyticity of the free surface.
ISSN:1422-6928
1422-6952
DOI:10.1007/s00021-024-00858-3