Infinitesimally Moebius bendable hypersurfaces

Li, Ma and Wang have provided in [13] a partial classification of the so-called Moebius deformable hypersurfaces, that is, the umbilic-free Euclidean hypersurfaces $f\colon M^n\to \mathbb{R}^{n+1}$ that admit non-trivial deformations preserving the Moebius metric. For $n\geq 5$ , the classification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Edinburgh Mathematical Society 2024-02, Vol.67 (1), p.236-260
Hauptverfasser: Jimenez, M.I., Tojeiro, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 1
container_start_page 236
container_title Proceedings of the Edinburgh Mathematical Society
container_volume 67
creator Jimenez, M.I.
Tojeiro, R.
description Li, Ma and Wang have provided in [13] a partial classification of the so-called Moebius deformable hypersurfaces, that is, the umbilic-free Euclidean hypersurfaces $f\colon M^n\to \mathbb{R}^{n+1}$ that admit non-trivial deformations preserving the Moebius metric. For $n\geq 5$ , the classification was completed by the authors in [12]. In this article we obtain an infinitesimal version of that classification. Namely, we introduce the notion of an infinitesimal Moebius variation of an umbilic-free immersion $f\colon M^n\to \mathbb{R}^m$ into Euclidean space as a one-parameter family of immersions $f_t\colon M^n\to \mathbb{R}^m$ , with $t\in (-\epsilon, \epsilon)$ and $f_0=f$ , such that the Moebius metrics determined by f t coincide up to the first order. Then we characterize isometric immersions $f\colon M^n\to \mathbb{R}^m$ of arbitrary codimension that admit a non-trivial infinitesimal Moebius variation among those that admit a non-trivial conformal infinitesimal variation, and use such characterization to classify the umbilic-free Euclidean hypersurfaces of dimension $n\geq 5$ that admit non-trivial infinitesimal Moebius variations.
doi_str_mv 10.1017/S0013091523000792
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2932581511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932581511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-e936aba4f9e69d013f689322e08370275f34274bec2fd31db8d9421adfe752983</originalsourceid><addsrcrecordid>eNplkE1LxDAYhIMoWFd_gLeC565589EkR1n8WFjxoJ5D0r7BLrWtSXvov7dlvXmawzzMMEPILdAtUFD375QCpwYk45RSZdgZyUCUouCam3OSrXax-pfkKqXjyigJGdnuu9B0zYip-XZtO-evPfpmSrnHrna-xfxrHjCmKQZXYbomF8G1CW_-dEM-nx4_di_F4e15v3s4FBVjcizQ8NJ5J4LB0tRLdSi14Ywh1VxRpmTgginhsWKh5lB7XRvBwNUBlWRG8w25O-UOsf-ZMI322E-xWyotW4KkBgmwUHCiqtinFDHYIS4z4myB2vUW--8W_gsBwVN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932581511</pqid></control><display><type>article</type><title>Infinitesimally Moebius bendable hypersurfaces</title><source>Cambridge University Press Journals Complete</source><creator>Jimenez, M.I. ; Tojeiro, R.</creator><creatorcontrib>Jimenez, M.I. ; Tojeiro, R.</creatorcontrib><description>Li, Ma and Wang have provided in [13] a partial classification of the so-called Moebius deformable hypersurfaces, that is, the umbilic-free Euclidean hypersurfaces $f\colon M^n\to \mathbb{R}^{n+1}$ that admit non-trivial deformations preserving the Moebius metric. For $n\geq 5$ , the classification was completed by the authors in [12]. In this article we obtain an infinitesimal version of that classification. Namely, we introduce the notion of an infinitesimal Moebius variation of an umbilic-free immersion $f\colon M^n\to \mathbb{R}^m$ into Euclidean space as a one-parameter family of immersions $f_t\colon M^n\to \mathbb{R}^m$ , with $t\in (-\epsilon, \epsilon)$ and $f_0=f$ , such that the Moebius metrics determined by f t coincide up to the first order. Then we characterize isometric immersions $f\colon M^n\to \mathbb{R}^m$ of arbitrary codimension that admit a non-trivial infinitesimal Moebius variation among those that admit a non-trivial conformal infinitesimal variation, and use such characterization to classify the umbilic-free Euclidean hypersurfaces of dimension $n\geq 5$ that admit non-trivial infinitesimal Moebius variations.</description><identifier>ISSN: 0013-0915</identifier><identifier>EISSN: 1464-3839</identifier><identifier>DOI: 10.1017/S0013091523000792</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Classification ; Deformation ; Euclidean geometry ; Euclidean space ; Formability ; Hyperspaces</subject><ispartof>Proceedings of the Edinburgh Mathematical Society, 2024-02, Vol.67 (1), p.236-260</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-e936aba4f9e69d013f689322e08370275f34274bec2fd31db8d9421adfe752983</cites><orcidid>0000-0001-7967-1058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jimenez, M.I.</creatorcontrib><creatorcontrib>Tojeiro, R.</creatorcontrib><title>Infinitesimally Moebius bendable hypersurfaces</title><title>Proceedings of the Edinburgh Mathematical Society</title><description>Li, Ma and Wang have provided in [13] a partial classification of the so-called Moebius deformable hypersurfaces, that is, the umbilic-free Euclidean hypersurfaces $f\colon M^n\to \mathbb{R}^{n+1}$ that admit non-trivial deformations preserving the Moebius metric. For $n\geq 5$ , the classification was completed by the authors in [12]. In this article we obtain an infinitesimal version of that classification. Namely, we introduce the notion of an infinitesimal Moebius variation of an umbilic-free immersion $f\colon M^n\to \mathbb{R}^m$ into Euclidean space as a one-parameter family of immersions $f_t\colon M^n\to \mathbb{R}^m$ , with $t\in (-\epsilon, \epsilon)$ and $f_0=f$ , such that the Moebius metrics determined by f t coincide up to the first order. Then we characterize isometric immersions $f\colon M^n\to \mathbb{R}^m$ of arbitrary codimension that admit a non-trivial infinitesimal Moebius variation among those that admit a non-trivial conformal infinitesimal variation, and use such characterization to classify the umbilic-free Euclidean hypersurfaces of dimension $n\geq 5$ that admit non-trivial infinitesimal Moebius variations.</description><subject>Classification</subject><subject>Deformation</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Formability</subject><subject>Hyperspaces</subject><issn>0013-0915</issn><issn>1464-3839</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNplkE1LxDAYhIMoWFd_gLeC565589EkR1n8WFjxoJ5D0r7BLrWtSXvov7dlvXmawzzMMEPILdAtUFD375QCpwYk45RSZdgZyUCUouCam3OSrXax-pfkKqXjyigJGdnuu9B0zYip-XZtO-evPfpmSrnHrna-xfxrHjCmKQZXYbomF8G1CW_-dEM-nx4_di_F4e15v3s4FBVjcizQ8NJ5J4LB0tRLdSi14Ywh1VxRpmTgginhsWKh5lB7XRvBwNUBlWRG8w25O-UOsf-ZMI322E-xWyotW4KkBgmwUHCiqtinFDHYIS4z4myB2vUW--8W_gsBwVN8</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Jimenez, M.I.</creator><creator>Tojeiro, R.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7967-1058</orcidid></search><sort><creationdate>20240201</creationdate><title>Infinitesimally Moebius bendable hypersurfaces</title><author>Jimenez, M.I. ; Tojeiro, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-e936aba4f9e69d013f689322e08370275f34274bec2fd31db8d9421adfe752983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Deformation</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Formability</topic><topic>Hyperspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jimenez, M.I.</creatorcontrib><creatorcontrib>Tojeiro, R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jimenez, M.I.</au><au>Tojeiro, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinitesimally Moebius bendable hypersurfaces</atitle><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>67</volume><issue>1</issue><spage>236</spage><epage>260</epage><pages>236-260</pages><issn>0013-0915</issn><eissn>1464-3839</eissn><abstract>Li, Ma and Wang have provided in [13] a partial classification of the so-called Moebius deformable hypersurfaces, that is, the umbilic-free Euclidean hypersurfaces $f\colon M^n\to \mathbb{R}^{n+1}$ that admit non-trivial deformations preserving the Moebius metric. For $n\geq 5$ , the classification was completed by the authors in [12]. In this article we obtain an infinitesimal version of that classification. Namely, we introduce the notion of an infinitesimal Moebius variation of an umbilic-free immersion $f\colon M^n\to \mathbb{R}^m$ into Euclidean space as a one-parameter family of immersions $f_t\colon M^n\to \mathbb{R}^m$ , with $t\in (-\epsilon, \epsilon)$ and $f_0=f$ , such that the Moebius metrics determined by f t coincide up to the first order. Then we characterize isometric immersions $f\colon M^n\to \mathbb{R}^m$ of arbitrary codimension that admit a non-trivial infinitesimal Moebius variation among those that admit a non-trivial conformal infinitesimal variation, and use such characterization to classify the umbilic-free Euclidean hypersurfaces of dimension $n\geq 5$ that admit non-trivial infinitesimal Moebius variations.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S0013091523000792</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-7967-1058</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-0915
ispartof Proceedings of the Edinburgh Mathematical Society, 2024-02, Vol.67 (1), p.236-260
issn 0013-0915
1464-3839
language eng
recordid cdi_proquest_journals_2932581511
source Cambridge University Press Journals Complete
subjects Classification
Deformation
Euclidean geometry
Euclidean space
Formability
Hyperspaces
title Infinitesimally Moebius bendable hypersurfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A52%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinitesimally%20Moebius%20bendable%20hypersurfaces&rft.jtitle=Proceedings%20of%20the%20Edinburgh%20Mathematical%20Society&rft.au=Jimenez,%20M.I.&rft.date=2024-02-01&rft.volume=67&rft.issue=1&rft.spage=236&rft.epage=260&rft.pages=236-260&rft.issn=0013-0915&rft.eissn=1464-3839&rft_id=info:doi/10.1017/S0013091523000792&rft_dat=%3Cproquest_cross%3E2932581511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932581511&rft_id=info:pmid/&rfr_iscdi=true