Infinitesimally Moebius bendable hypersurfaces
Li, Ma and Wang have provided in [13] a partial classification of the so-called Moebius deformable hypersurfaces, that is, the umbilic-free Euclidean hypersurfaces $f\colon M^n\to \mathbb{R}^{n+1}$ that admit non-trivial deformations preserving the Moebius metric. For $n\geq 5$ , the classification...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Edinburgh Mathematical Society 2024-02, Vol.67 (1), p.236-260 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Li, Ma and Wang have provided in [13] a partial classification of the so-called Moebius deformable hypersurfaces, that is, the umbilic-free Euclidean hypersurfaces
$f\colon M^n\to \mathbb{R}^{n+1}$
that admit non-trivial deformations preserving the Moebius metric. For
$n\geq 5$
, the classification was completed by the authors in [12]. In this article we obtain an infinitesimal version of that classification. Namely, we introduce the notion of an infinitesimal Moebius variation of an umbilic-free immersion
$f\colon M^n\to \mathbb{R}^m$
into Euclidean space as a one-parameter family of immersions
$f_t\colon M^n\to \mathbb{R}^m$
, with
$t\in (-\epsilon, \epsilon)$
and
$f_0=f$
, such that the Moebius metrics determined by
f
t
coincide up to the first order. Then we characterize isometric immersions
$f\colon M^n\to \mathbb{R}^m$
of arbitrary codimension that admit a non-trivial infinitesimal Moebius variation among those that admit a non-trivial conformal infinitesimal variation, and use such characterization to classify the umbilic-free Euclidean hypersurfaces of dimension
$n\geq 5$
that admit non-trivial infinitesimal Moebius variations. |
---|---|
ISSN: | 0013-0915 1464-3839 |
DOI: | 10.1017/S0013091523000792 |