Towards Fabrication of Sub-Micrometer Cross-Type Aluminum Josephson Junctions

The performance of superconducting electronic devices such as superconducting quantum bits (qubits) and superconducting quantum interference devices (SQUIDs) strongly relies on high-quality Josephson junctions (JJ) and their integration into surrounding circuit elements. Therefore, a corresponding f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2024-05, Vol.34 (3), p.1-5
Hauptverfasser: Mechold, S., Peiselt, K., Schmelz, M., Oelsner, G., Ziegler, M., Hubner, U., Kunert, J., Stolz, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The performance of superconducting electronic devices such as superconducting quantum bits (qubits) and superconducting quantum interference devices (SQUIDs) strongly relies on high-quality Josephson junctions (JJ) and their integration into surrounding circuit elements. Therefore, a corresponding fabrication technology should allow for the fabrication of all required elements including the JJs, inductances, capacitances and waveguides. For a long time, shadow evaporation technique was the state of the art for the implementation of sub-µm sized JJs based on aluminum for qubits of high coherence times. Although, the use of a single lithographic step represents a major advantage of this technique. However, shadowing effects limit sample size, device complexity, and thus scalability of the circuitry. To overcome these limitations and to meet the demands of next generation scalable quantum circuits, in this work we introduce our cross-type JJ aluminum technology, where JJs are defined by the overlap of two narrow perpendicular stripes. We discuss the technological challenges, with a focus on our newly developed dry etching process for patterning of the aluminum thin film. Compared to a lift-off based process, this advanced wafer-scale fabrication technology offers a high integration density and the required design flexibility. We will present first results on cross-type aluminum JJs.
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2023.3343681