A Comparative Investigation on the Structural, Optical and Electrical Properties of SiO2-Fe3O4 Core-Shell Nanostructures with Their Single Components

The SiO2-Fe3O4 core-shell nanostructures were synthesized by sol-gel chemistry. The morphological features of the nanostructures were examined by field emission scanning electron microscopy which revealed the core-shell nature of the nanoparticles. X-ray diffraction studies evidenced the formation o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta metallurgica sinica : English letters 2015-11, Vol.28 (11), p.1317-1325
Hauptverfasser: Bachan, Neena, Asha, A., Jothi Jeyarani, W., Arun Kumar, D., Shyla, J. Merline
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The SiO2-Fe3O4 core-shell nanostructures were synthesized by sol-gel chemistry. The morphological features of the nanostructures were examined by field emission scanning electron microscopy which revealed the core-shell nature of the nanoparticles. X-ray diffraction studies evidenced the formation of SiO2-Fe3O4 core-shell nanostructures with high degree of homogeneity. The elemental composition of the SiO2-Fe3O4 core-shell nanostructures was determined by energy-dispersive X-ray spectroscopy analysis. Fourier transform infrared spectroscopy showed the Si-O-Fe stretching vibrations. On analysis of the optical properties with UV-Vis spectra and Tauc's plot, it was found that the band gap of SiO2-Fe3O4 core-shell nanostructures diminished to 1.5 eV. Investigation of the electrical properties of the core-shell nanostructures using field-dependent conductivity measurements presented a significant increase in photoconductivity as compared to those of its single components, thereby rendering them as promising candidates for application as photo- electrodes in dye-sensitized solar cells.
ISSN:1006-7191
2194-1289
DOI:10.1007/s40195-015-0328-3